TECHNICAL MEMORANDUM

SUBJECT: Well MJ-PW2 Evaluation, Middletown-Junction Property, Warren County, Ohio

PREPARED BY: Brent E. Huntsman, CPG & Kelly C. Smith, CPG

Terran Corporation, Beavercreek, Ohio.

DATE: May 19, 2025

SUMMARY

Terran Corporation, on behalf of Warren County Water & Sewer Dept. (WCW&SD), submits the following technical memorandum to document the installation and testing of production well MJ-PW2 for final approval by the Ohio Environmental Protection Agency, Southwest District Office (Ohio EPA, SWDO) for use as a Public Water System, Community Water Supply (PWS CWS) well.

WCW&SD submits for consideration the following details concerning MJ-PW2:

- 1) MJ-PW2 is a 16-inch diameter, 71-feet deep production well located on the northeast side of the Middletown-Junction property, situated next to the Little Miami River (Figure 1).
- 2) The ODNR well log (#785540) is provided in Attachment #1.
- 3) The well's coordinates are: latitude: 39.3647528; longitude: -84.2403063.
- 4) The stainless steel, wire-wrapped screen consists of 20-feet of 110 slot openings set from 51 to 71 feet below ground surface (ft. bgs) at the bottom of the aquifer (an unconsolidated sand and gravel deposit approximately 90 feet thick). A quartz sand filter pack was constructed around the screen from 45 feet to 71 feet. A cement grout seal was placed from 30 ft. bgs to 5 ft. bgs (Figure 3).
- 5) MJ-PW2 was able to sustain a pumping rate of 1,660 gallons per minute (gpm) during the 24-hour constant rate test (CRT). WCW&SD is requesting an Ohio EPA-approved permanent pump design rating of 1,000 gpm for MJ-PW2.
- 6) The 2025 CRT results indicated the near-well aquifer transmissivity at MJ-PW2 ranges 23,380 to 63,360 feet squared per day (ft.²/day) and averages about 35,100 ft.²/day. The hydraulic conductivity ranges 410 to 892 feet/day (ft./day) and averages about 590 ft./day. Aquifer storativity ranges 3.04×10^{-7} to 5.5×10^{-2} and averaged 1.14×10^{-3} . These values are consistent with expected values for a semi-confined aquifer and corroborate results from historical aquifer tests at the Middletown-Junction property.

The well's groundwater quality parameters meet Federal Maximum Contaminant Levels (MCLs) and Secondary MCLs (SMCLs) with the exception for the per- and polyfluoroalkyl substances (PFAS) constituent perfluorooctane sulfonate (PFOS) at $0.0164~\mu g/L$ (16.4~ng/L) (associated with the surface water quality of the Little Miami River) (Tables 4 and 5).

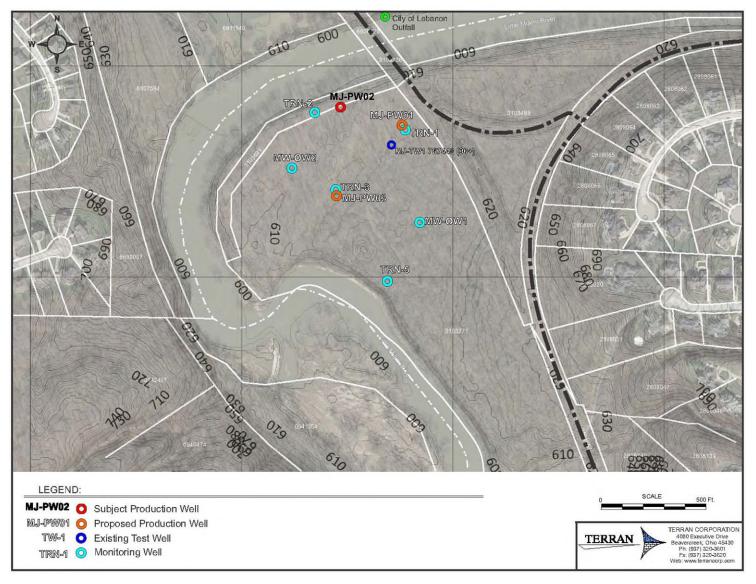


Figure 1. Location of production well MJ-PW2 and monitoring wells at the Middletown-Junction property.

Well Drilling and Construction Description

Drilling of MJ-PW2 was completed during 1994 by Reynolds, Inc. on behalf of Warren County for purposes of serving as a test production well named TW-2. TW-2 was drilled to expand the site investigation underway at that time using test well TW-1. TW-1 is an 8-inch diameter steel-cased well drilled by Moody's of Dayton during January 1994 (ODNR log #767448). TW-2 was constructed with a 24-inch outer casing using a bucket augur rig. The 24-inch casing was driven down and bailed to the bottom of the aquifer, a course sand and gravel outwash deposit encountering a gray clay deposit at 71 ft. bgs (Figure 3).

Figure 2. Test Well TW-2 as found at the Middletown-Junction property during an October 2022 reconnaissance survey and inventory of wells.

According to the ODNR well log (#785540), test well TW-2 (renamed MJ-PW2) was constructed with a 0.110-inch slot, 20-foot length of screen set from 51 to 71 ft. bgs. An unspecified quarry sand filter pack was placed around the screen and well casing from 35 to 70 ft. bgs. The remainder of the casing annular space was grouted shut using concrete grout to seal the annular space from 30 ft. bgs to 5 ft. bgs (Figure 3).

All of the well's final construction features, such as the pitless adaptor, submersible pump and supporting appurtenances will be installed according to WCW&SD plans at a later date when the well field is constructed under a separate contract and contractor. The proposed pump for MJ-

Technical Memorandum MJ-PW2 Production Well Middletown-Junction Property May 19, 2025

PW2 is an American-Marsh submersible pump capable of pumping 600 to 1,400 gpm under a total dynamic head pressure of 284 feet. A copy of the proposed pump performance data sheets are provided in Attachment #2 of this memorandum.

Well Development

MJ-PW2 was re-developed in accordance with OAC 3745-9-09 to clean the well in preparation for use as a PWS production well. Re-development was conducted by repeated surging of the well screen while air-lift pumping the water at a rate of approximately 100 gpm to remove the formation fines. Development was conducted during March-April 2025 and effectively removed the silt and sand from around the screen. This was confirmed using a using a Rossum Sand Tester throughout the development process. After completion of development, subsequent measurements of sand accumulation in the tester from well discharge during the SDT and CRT were hardly visible.

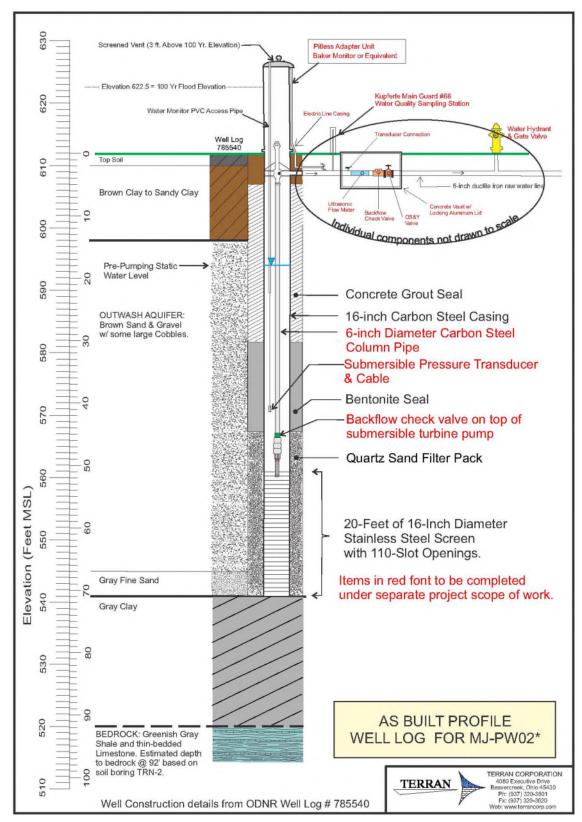


Figure 3. As built diagram for production well MJ-PW2.

Hydrogeologic Setting

The hydrogeologic setting of the subject area was characterized through the drilling of soil borings TRN-1 to TRN-7 with the installation of monitoring wells TRN-1, TRN-2, TRN-3 and TRN-5 (Terran Corp., 2022b). The site hydrogeology consists of stratified glacial outwash comprising a single buried valley aquifer (BVA) contained within a deeply incised bedrock valley (Figure 4). The BVA is primarily an unconfined aquifer and TW-2 (renamed MJ-PW2) is screened at the bottom of this aquifer at its location.

Depth to groundwater is shallow, ranging from approximately 16 to 24 ft. bgs as measured in the monitoring and test wells (Table 1). Water levels for monitoring wells TRN-1, TRN-2 and TRN-3 located throughout the site (Figure 1) reflect the hydrodynamic activity at the Middletown-Junction property. Water levels in the three wells during March and April 2023 fluctuated on the order of 3 to 4 feet in response to high water events along the Little Miami River as measured at the U.S. Geological Survey (USGS) station 03242050 at South Lebanon (Figure 5).

Groundwater modeling of the Middletown-Junction property was conducted to evaluate the production potential of the proposed well field (Terran Corp., 2022a and 2023). The modeling results indicated a well field capable of producing 2.5 million gallons per day (MGD) is possible through three production wells, pumping between 550 to 600 gpm each. Based on the aquifer testing of the test and proposed production wells at the property, the model was revised and determined that the aquifer has potential for 3.0 MGD production using two production wells. MJ-PW2 will be considered a backup well to the two primary production wells MJ-PW1 and MJ-PW3.

During the process for site approval of the Middletown-Junction property, the Ohio EPA expressed concern regarding the City of Lebanon's WWTP outfall occurring in proximity to the proposed well field. To address the concern, Terran conducted fate and transport (F&T) modeling of the outfall using chloride as the constituent of concern to evaluate potential long-term impact to the well field under 3.0 MGD operation using wells MJ-PW1 and MJ-PW3 (Terran Corp., 2024a) and the existing test well TW-2 (Terran Corp., 2024b). Results of the F&T modeling indicated the location of the outfall with respect to the well field and the surface flow of the Little Miami River and the silty nature of the Little Miami River's bed will sufficiently protect the water quality of the Middletown-Junction well field.

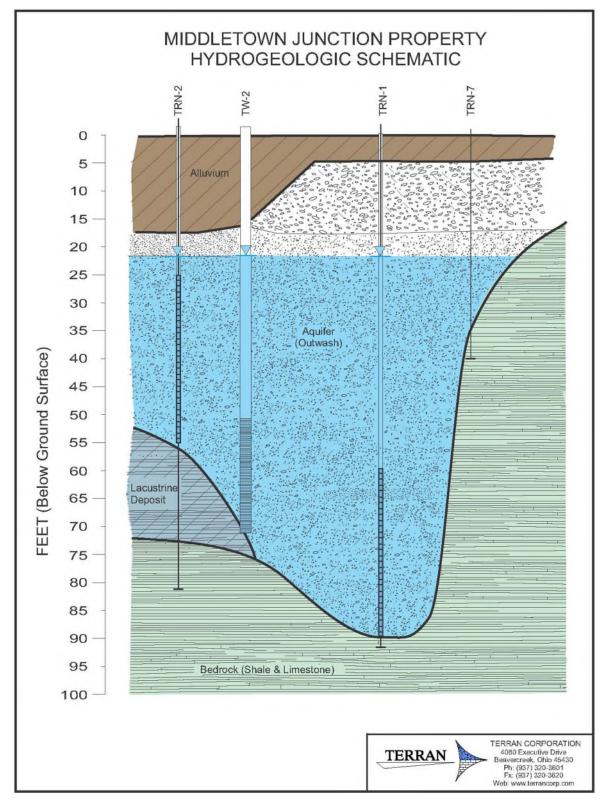


Figure 4. Conceptual hydrogeologic profile of buried valley aquifer at TW-2 (renamed MJ-PW2) across the Middletown-Junction property.

Table 1. Summary of Groundwater Level Measurements at the Middletown-Junction Property.

Date	TRN-1	TRN-2	TRN-3	TRN-5	OW-1	OW-2	TW-1	TW-2*
Date	Depth to Groundwater (Feet below top-of-casing)							
11/14/2022	22.70	22.40	20.02	24.85				
12/29/2022	22.91	22.65	20.22		25.45		22.36	19.25
1/4/2023	21.55	21.27	18.83	23.53	24.09	18.82	20.98	17.88
1/10/2023	21.63	21.39	18.99	23.81	24.20	18.97	21.13	18.09
1/11/2023	21.75	21.49	19.09	23.91	24.30	19.10	21.21	18.16
1/18/2023	21.28	21.01	18.59	23.42	23.79	18.60	20.76	17.64
1/27/2023	20.47	20.18	17.73	22.49	22.96	17.75	19.95	16.83
2/2/2023	20.59	20.33	17.93	22.78	23.15	17.94	20.09	16.98
3/1/2023	21.46	21.17	18.74	23.54	23.97	18.79	20.57	17.76
4/11/2023	19.04	18.82	16.48	21.60	21.67	16.44	18.23	15.41
4/12/2023	20.07	19.78	17.41	22.33	22.60	17.36	19.68	16.39
5/2/2023	21.30	21.04	18.61	23.31	23.84	18.61	20.48	17.67
5/18/2023	21.30	21.03	18.66		23.84	18.75	20.48	17.65
5/24/2023	21.87	21.62	19.19	24.06	24.44	19.25	21.34	17.94
6/1/2023	22.52	22.28	19.87	24.68	25.09	19.87	22.00	22.28
12/11/2024	22.40	22.43	20.00	24.80	25.22		21.84	20.01
12/17/2024	22.58	22.03	19.59	24.22	24.81	19.58	21.44	18.61
2/25/2025	19.71	19.63	16.95			17.21	18.70	16.12
3/7/2025	20.99	20.75	18.34	23.20	23.55	18.32	20.15	17.40
3/14/2025	22.41	22.12	19.70	24.40	24.91	19.72	21.57	18.76
3/18/2025	19.43	19.20	17.12	21.47	21.67	16.77	19.43	15.84

^{*} TW-2 is renamed MJ-PW2.

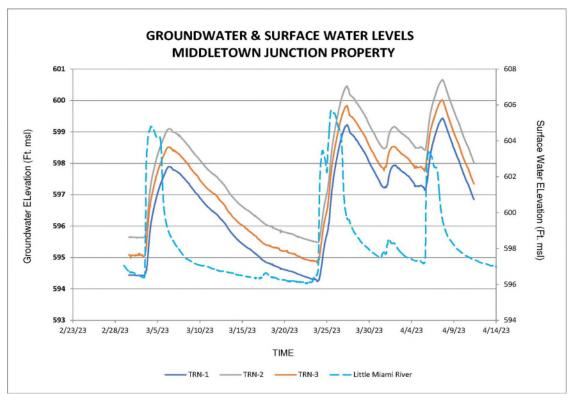


Figure 5. Groundwater level trends in monitoring wells TRN-1 to TRN-3 and Little Miami River stage elevations, March 1-April 11, 2023.

Well Testing

As required by OAC 3745-9-09(B), the aquifer and well performance at the MJ-PW3 wellsite were characterized through the conduct of a Step-Drawdown Test (SDT), a 24-hour Constant Rate Test (CRT) and a nominal 12-hour Recovery Test (RT). These tests were successfully completed from April 1-3, 2025. Test data was used for aquifer characterization to determine the sustainable yield and potential drawdown of the well at its rated design capacity. In addition to estimates of sustainable yield and drawdown, the tests were also evaluated to determine representative values of key aquifer coefficients; transmissivity, hydraulic conductivity, storativity and diffusivity. These newly acquired well and aquifer parameters are used to update the Middletown-Junction property conceptual, analytical and numerical groundwater models. The Ohio EPA required SDT and CRT field forms are provided in Attachment #3.

Step Drawdown Test (SDT) Description

The SDT of MJ-PW2 started at 09:00 hours on April 1, 2025. Four 120-minute-long steps were completed at pumping rates of 740, 1,133, 1,435 and 1,660 gpm. MJ-PW2 was tested using a submersible test pump and portable generator. At the wellhead, a 90-degree elbow, pressure gauge and controlling gate valve were installed to regulate discharge. Also installed at the pumping well were a transducer/datalogger and fixed electronic tape to monitor water levels manually and electronically (Figure 6).

Approximately 85 feet of 8-inch flexible discharge line extended the test pump discharge away from MJ-PW2 to the north, connecting to a 10x7-inch orifice meter and manometer (Figure 7). Water levels in MJ-PW2 at the wellhead were monitored using both pressure transducer/datalogger and manual measurements. The transducer/data logger combination was programmed to record water level changes to a hundredth (0.01) of a foot every minute. A pressure transducer/datalogger was also installed on the discharge pipe manometer to record changes in discharge every minute (Figure 7).

Figure 8 graphically summarizes the drawdown measured in the pumping well as a function of SDT elapse time. These data are used to calculate the well performance parameters and aquifer hydraulic characteristics at and near the production well.

Figure 6. MJ-PW2 wellhead monitoring and flow control for SDT, CRT and RT.

Figure 7. SDT & CRT discharge pipe, orifice and manometer to measure discharge.

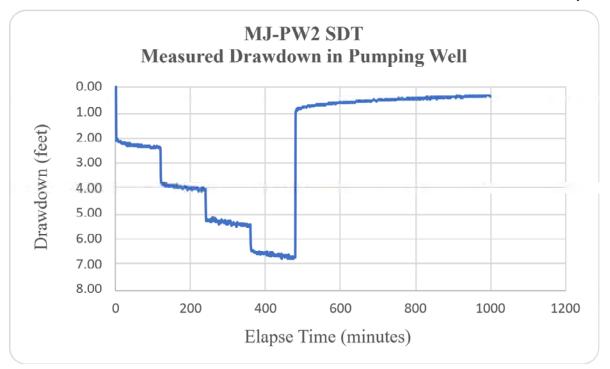


Figure 8. Graphical summary of drawdown vs. SDT elapse time at MJ-PW2.

Step Drawdown Test Results

The step test data was analyzed using various analytical techniques including those developed by Rorabaugh (1953), Kasenow (2001) and Bierschenk (1964). Analysis results are summarized in Figure 9. MJ-PW2 total in-well water level drawdown predictably decreases as pumping rates increase. This is graphically shown by the increase in the pumping well water level drawdown (Figure 9, 1st panel, dark blue line) as the discharge rate increased. Since all three of the SDT analysis methods provided virtually the same resulting total drawdown measured in the pumping well during the SDT, the various head loss components can be calculated with some certainty. This allows us to establish benchmark values for these individual head loss components of MJ-PW2 at its current condition as a newly constructed production well. These benchmark values represent the baseline or near optimal conditions to compare future well performance tests of MJ-PW2.

About 40 percent of the total drawdown in MJ-PW2 is attributed to natural flow restrictions within the aquifer and through the well filter pack. This is graphically depicted as the red line in panels 2, 3 and 4 of Figure 9. Commonly described as aquifer loss or laminar well loss, this head loss component considers the rate at which laminar flow contributes to the pumped well total drawdown. Aquifer loss is calculated using the aquifer loss coefficient "B". As determined from

Technical Memorandum MJ-PW2 Production Well Middletown-Junction Property May 19, 2025

April 1, 2025 SDT, the benchmark B coefficient value for MJ-PW2 was measured to be 0.0025 ft./gpm.

Depending upon pumping rate, well loss or turbulent flow loss, as measured by the well loss coefficient "C", causes about 13 to 23 percent of the total drawdown in MJ-PW2 (green line in panels 2, 3 and 4, Figure 9). In its current state as "new" construction, a production well benchmark C coefficient value for MJ-PW2 of $9.81E^{-07}$ ft./gpm² was determined from the SDT results. This qualitatively suggests the well was properly designed and developed (Walton, 1962; Bierschenk, 1964).

A third head loss component affecting total drawdown in a well is partial penetration of the well screen within the aquifer. As shown by the light blue line in panels 2, 3 and 4 of Figure 9, partial penetration effects accounted for approximately 40 percent of the total drawdown in MJ-PW2. Only a portion of the aquifer was screened for this production well to minimize effects of well interference and maintain sufficient available drawdown during seasonal variations of the groundwater piezometric levels.

From April 2025 SDT data, near-well aquifer transmissivity was estimated to be about 63,560 ft²/day. Assuming a 71-foot aquifer thickness at MJ-PW2, a hydraulic conductivity value 1,110 ft./day was calculated using the near-well transmissivity estimate (Figure 9). This high K value assumes no hydraulic recharge or barrier boundaries were encountered within the short duration SDT radius of influence. Boundary conditions effects on MJ-PW2 potential production will be discussed as part of the CRT data analysis.

A common technique to judge production well performance is to calculate the well's specific capacity at various discharge rates. Figure 10 graphically summarizes the changes in specific capacity and drawdown observed at MJ-PW2 during the April 2025 SDT.

Figure 9. Summary graphic of step-drawdown test analysis for MJ-PW2.

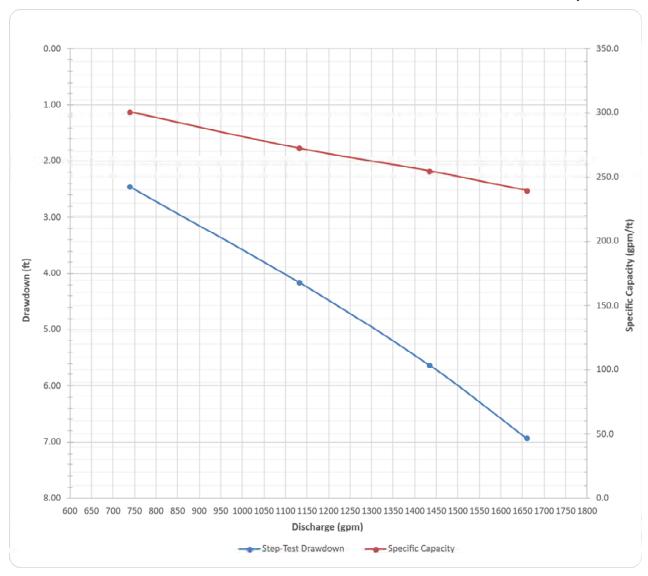


Figure 10. Changes in drawdown and specific capacity in MJ-PW2 during April 1, 2025 SDT.

Constant Rate Test Description

Beginning April 2nd and concluding April 3rd, 2025, a 24-hour CRT and nominal 12-hour RT was completed by Terran and National Water Services at MJ-PW2. The pumping portion of the CRT began at 09:00 hours on April 2nd and continued until April 3rd at 09:00 hours. Discharge remained stable throughout the duration of the CRT, averaging 1,660 gpm. During the 1,440-minute pumping phase of the test, approximately 2.4 million gallons of water (2.4 MGD) were extracted.

Recording of water levels in the pumping and monitoring wells for the recovery phase of the CRT began immediately upon pumping ending on April 3rd at 09:00 hours and continued until 10:00 hours on December 19th. The aquifer water levels recovered at MJ-PW2 to the prepumping static water level in about 2400 minutes (Figure 11).

Approximately 85 feet of 8-inch flexible discharge line extended the test pump discharge away from MJ-PW1 to the north, connecting to a 10x7-inch orifice meter and manometer (Figures 6 and 7). Water levels in MJ-PW2 at the wellhead were monitored using both pressure transducer/datalogger and manual measurements. The transducer/data logger combination was programmed to record water level changes to a hundredth (0.01) of a foot using a one-minute sampling schedule. A pressure transducer/datalogger was also installed on the discharge pipe manometer to record changes in discharge every minute (Figure 7).

Figure 11 graphically summarizes the drawdown and recovery measured in the pumping well as the function of CRT elapse time. Figure 12 is a corresponding graphical summary of discharge changes recorded at the manometer with elapse time. These data are used to calculate the well performance parameters and aquifer hydraulic characteristics at and near the production well.

In addition to collecting water level measurements manually and electronically at the pumping well, two additional locations were monitored using transducers and dataloggers: MJ-PW1 and MJ-PW3. (Figure 1). Additional analysis results from previous pump tests using MJ-TW2 (now MJ-PW2) and other monitoring wells are included in Figures 15, 16 and 17. Table 2 provides specific details of each monitoring location as it pertains to their use in the CRT analysis.

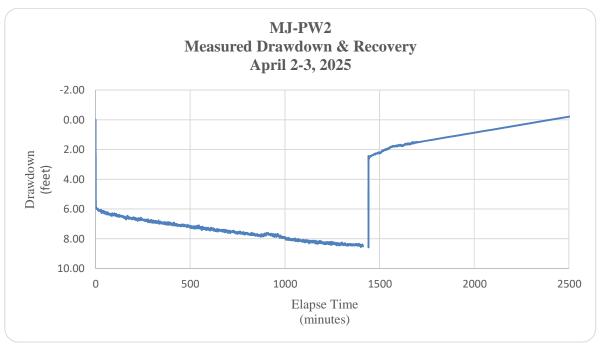


Figure 11. Graphical summary of drawdown and recovery vs. CRT elapse time at MJ-PW2.

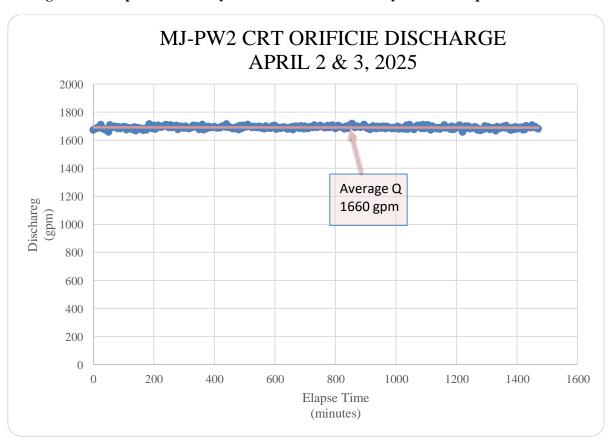


Figure 12. Graphical summary of discharge vs. elapse time during MJ-PW2 CRT pumping phase.

Table 2. Pumping and monitoring wells utilized in April 2025 MJ-PW2 SDT & CRT.

	Location		Ground	Casing	Meas. Pt.	Screen	Screen	Distance to
Well	Northing/Y	Easting/X	Elevation	Stickup	Elevation	Diameter	Length	Pump Well
ID	(feet)	(feet)	(ft MSL)	(feet)	(ft MSL)	(inches)	(feet)	(feet)
MJ-PW1	501775	1476820	613	3.5	616	16	20	322
MJ-PW2 (MJ-TW2)	501809	1476503	610.2	2.2	612.4	16	20	0
MJ-PW3	501446	1476503	~612	3.6	~616	8	20	405

Note: Measuring point elevations are estimated for MJ-PW2 & MJ-PW3

Constant Rate Test Results

Transmissivity and storativity may be estimated using the change in drawdown as a function of the production well discharge with time and distance to an observation well. Many aquifer analysis techniques have been developed for the evaluation of time-drawdown data. For the MJ-PW2 CRT, several of these techniques were used to determine key aquifer coefficients. The computer program AQTESOLVTM was used to apply the analytical methods of Neuman-Witherspoon (1969), Theis (1935), Cooper-Jacob (1946), Papadopulos-Cooper (1967) and others to evaluate the CRT data. A representative analysis graph is shown in Figure 13 using the drawdown data from the pumping well and MJ-PW3, about 405 feet distal. Figure 14 shows residual drawdown curves of monitoring wells superimposed upon MJ-PW2 recovery data. Table 3 summarizes the transmissivity and storativity values calculated for the pumped and observation wells using applicable analytical models.

Analyses of water level data obtained during the CRT confirm the outwash aquifer in the study area behaves as a semi-confined hydrologic unit. In the vicinity of MJ-PW2 during the recent CRT, the predominate flow regime was bilinear. The induced flow regime at the remaining monitoring wells appeared to start at radial moving to spherical at test end. A representative apparent late-time transmissivity value for the portion of the Middle-Junction property affected during the MJ-PW2 CRT would be \pm 25,300 ft²/day. Assuming the saturated aquifer thickness is 57 feet, a representative hydraulic conductivity would be \pm 440 ft./day (Table 3).

Storativity is the measure of the volume of water retained in or released from storage in the aquifer, expressed as a function of surface area and change in head. The smaller the value for storativity, typically the more confined the aquifer. As shown in Table 3, once the cone of depressions extends beyond the immediate area of MJ-PW2, a representative calculated storage value from the CRT would be $0.0011 (1.1 \times 10^{-3})$.

Groundwater Production Potential at Middletown-Junction Property

The current groundwater conceptual site model of the Middletown-Junction property suggests the underlying aquifer consists of coarse outwash materials deposited in an erosional channel bounded by shale bedrock walls (Figure 9, Terran Corp., 2022a,b). This type of aquifer formation is commonly referred to as strip, channel or buried-valley aquifer. Groundwater flow in strip aquifers is strongly influenced by boundaries, usually resulting in an unexpectedly large drawdown of groundwater levels over large distances. When developing a wellfield in a strip aquifer, the underestimation of drawdowns can result in an overestimation of sustainable yields.

Beginning in 1993, to determine representative values for transmissivity (T) and hydraulic conductivity (K) of the aquifer beneath Middletown-Junction, SDTs and CRTs were completed using MJ-TW2 (now designated as MJ-PW2) and MJ-TW1 as pumping wells while measuring water level drawdown in nearby monitoring wells. Depending upon the pumping rate and duration of each test, the cone of depression may or may not encounter the aquifer boundaries. If no-flow or barrier boundaries are not reached during the pumping process of a test, the calculated T and K values will be higher and drawdown less than results for tests that are affected by boundaries.

We will use current and historical pumping tests at MJ-TW1 and MJ-TW2 to illustrate the effects of barrier boundaries. In 1993, a 2-hour SDT was completed at MJ-TW1 using 3-steps of 300, 600 and 715 gpm discharge rates. Calculated test results for T and K were 60,800 ft²/day and 822 ft/day, respectively. This SDT was followed by a 2,880-minute CRT pumping at 700 gpm. Data from this test resulted in a calculated T value of 51,500 ft²/day and 757 ft/day for hydraulic conductivity. A 2023 CRT pumped MJ-TW1 at 222 gpm for 1,560 minutes. Results for T were 50,800 ft²/day and 747 ft/day for K. It was noted that in the interpretation of these tests, the cone of depression did not extend sufficiently far to encounter significant barrier or recharge boundaries.

The geometric mean for these MJ-TW1 pump tests results would be 54,200 ft²/day for transmissivity and 775 ft/day for hydraulic conductivity. These mean aquifer coefficient values are used to estimate the theoretical water level drawdown in MJ-TW1 if stressed at a higher pumping rate for a longer pumping duration. Using appropriate analytical equations, if MJ-TW1 could be pumped at 1,700 gpm for ten days, about 9.3 feet of drawdown in the pumping well would be realized.

For comparison, in 2023 a 3-hour SDT was completed at MJ-TW2 using 3-steps of 409, 557 and 730 gpm discharge rates. Calculated test results for T and K were 56,600 ft²/day and 922 ft/day, respectively. Corrected for aquifer thickness, T and K values from the SDTs at MJ-TW1 and MJ-TW2 are very similar if not the same. Specific capacity for the MJ-TW1 SDT 3rd step was

Technical Memorandum MJ-PW2 Production Well Middletown-Junction Property May 19, 2025

268 gpd/ft compared to MJ-TW2 SDT 3rd step of 266 gpm/ft. This is to be expected since both wells are completed in the same strip aquifer spaced only 310 feet apart.

In 1994, a CRT using well MJ-TW2 pumping at 1,700 gpm for ten days was performed. The total drawdown in this test production well at the end of ten days pumping was about 26 feet. The cause for the unusually large drawdown response appears to be barrier boundaries. The 1994 CRT sufficiently stressed the aquifer over the ten-day period to reduce the effective transmissivity from 56,600 ft²/day to 15,400 ft²/day. Effective hydraulic conductivity was lowered from about 901 ft./day to 250 ft./day (Figures 15, 16 and 17).

Similar to the 1994 tests, recently completed SDT and CRT using MJ-PW2 provided ample stress to the aquifer to measure the initial effects of barrier boundaries on water level drawdowns. Figure 18 summarizes a portion of this data to determine representative T and K values throughout the aquifer when one-day pumping stresses invoke barrier boundary effects. This information will be used to update and utilize the numerical groundwater model for the Middletown-Junction property in determining possible production well(s) sustainable production potential.

Table 3. Calculated aquifer transmissivity and storativity values for MJ-PW2 and selected monitoring wells.

					Hydraulic	
Pumping	Obs.	Test	Solution	Transmissivity	Conductivity	Storativity
Well	Well	Type	Method	(ft²/day)	(ft/day)1	(unitless)
MJ-PW2	MJ-PW2	Step-Drawdown	Theis	63,360	892	NA
MJ-PW2	MJ-PW2	Step-Drawdown	Specific Capacity	48,060	843	NA
			Geometeric Mean	55,182	867	
MJ-PW2	MJ-PW2	Constant Rate	Cooper-Jacob	27,660	485	NA
MJ-PW2	MJ-PW2	Recovery	Theis (Recovery)	42,900	753	NA
			Geometeric Mean	34,447	604	
MJ-PW2	MJ-PW1	Constant Rate	Neuman-Witherspoon	25,140	441	4.04E-04
MJ-PW2	MJ-PW1	Constant Rate	Cooper-Jacob	25,500	447	5.50E-02
MJ-PW2	MJ-PW1	Constant Rate	Moench (Case 2)	25,570	449	4.31E-04
MJ-PW2	MJ-PW1	Recovery	Theis (Recovery)	25,130	441	NA
			Geometeric Mean	25,334	444	2.12E-03
MJ-PW2	MJ-PW3	Constant Rate	Cooper-Jacob	23,380	410	3.66E-02
MJ-PW2	MJ-PW3	Constant Rate	Moench (Case 2)	25,340	445	4.69E-04
MJ-PW2	MJ-PW3	Constant Rate	Neuman-Witherspoon	25,570	449	3.04E-07
	MJ-PW3	Recovery	Theis (Recovery)	27,480	482	NA
MJ-PW2	1V13-1 VV 3				-	

Notes: NA = Calculation method does not provide estimates of this variable

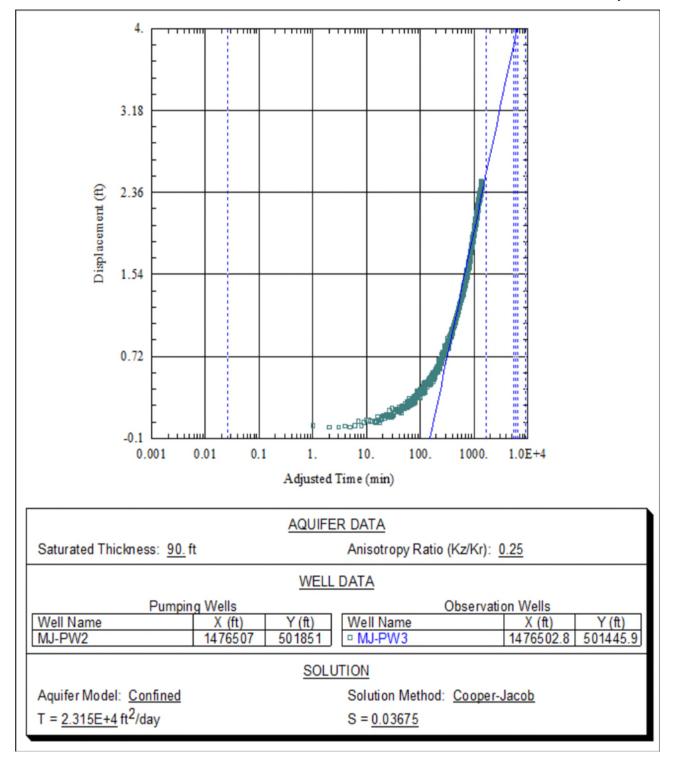


Figure 13. Analysis hydrograph of drawdown in MJ-PW3 used as a monitoring well for the April 2025 MJ-PW2 CRT.

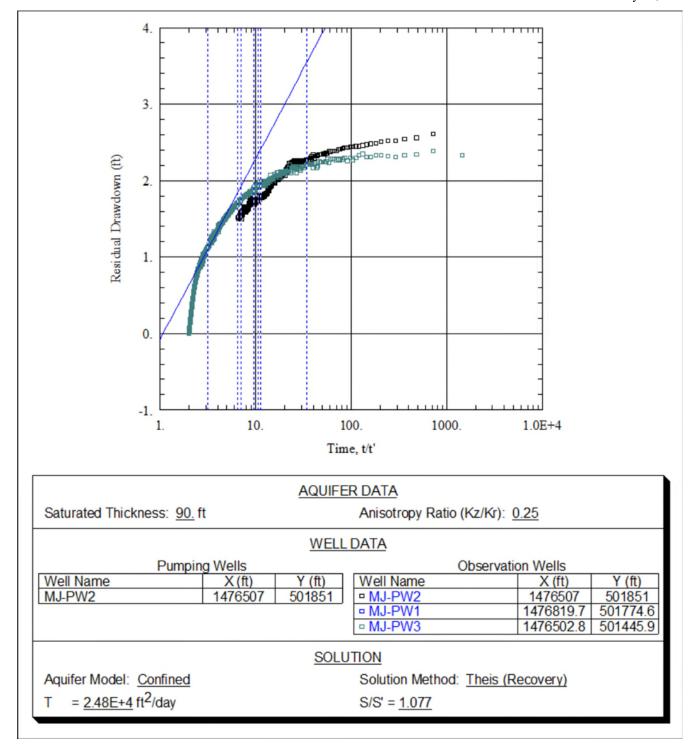
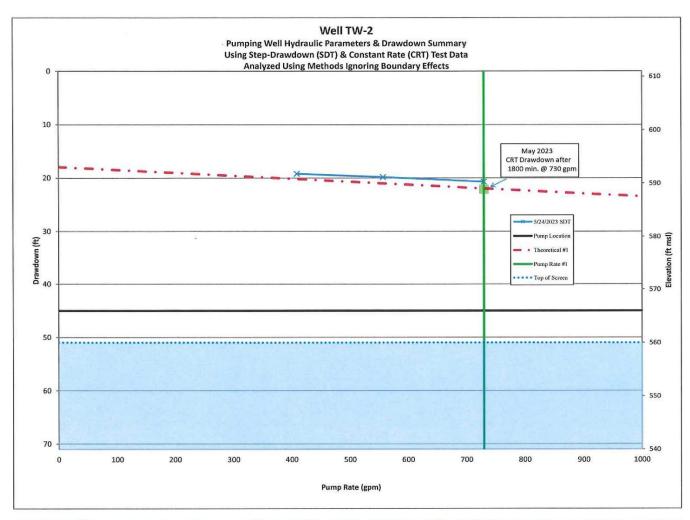



Figure 14. Composite residual recovery analysis of April 2025 MJ-PW2 CRT.

	Test	Total	Highest	SDT	SDT	Loss Coe	fficients	Near-Well A	quifer Pa	arameters		
Test Date	Analysis Type	Pumping Duration	Pumping Stress	Step Duration	Step Events	Aquifer B	Well C	Т	К	S	Sy	Comments
		(minutes)	(gpm)	(minutes)	(each)	(ft/gpm)	(ft/gpm²)	(gal/day/ft)	(ft/d)	(unitless)	(unitless)	
5/24/2023	SDT	180	730	60	3	0,0021	2.27E-06	423,000	992			B & C - four analysis methods; T & K by Theis; b=53 ft
5/24/2023	Spc. Cap.	180	730					399,600	937			Driscoll unconfined method; b=53 ft
5/25-26/2023	CRT	1800	730					380,000	958			Theis method; b=53 feet
5/25-26/2023	CRT	1800	730					376,500	950			Theis recovery method; b=53 ft.
5/25-26/2023	CRT	1800	730					383,000	966			Cooper-Jacob method; b=53 ft.
5/25-26/2023	Obs	1800	730					291,000	734		0.109	Jaeger method using TW-1; b=53 ft
5/25-26/2023	Obs	1800	730					311,800	787		0.118	Jaeger method using TRN-2; b=53 ft
5/25-26/2023	D-D	1800	730					363,500	917	0.002		Kasenow method of D-D using TW-1; b=53 ft
Existing data	analysis repre	sentative well	aquifer coeffic	clents:		0.0021	2.27E-06	363,600	901	0.002	0.113	

SDT are Step-Drawdown Tests Notes:

Spc. Cap. are analyses techniques to calculated T & K values using Specific Capacity values CRT are Constant Rate Tests

are Distance Drawdown analyses methods D-D

are Observation well analysis methods. The pumping well being evaluated was used as an observation well during a nearby well pump or aquifer test, due to the test data not meeting the analysis method assumptions or boundaries, these values are incorrect and should not be considered representative Obs

Figure 15. Summary graphic illustrating aquifer coefficients calculated for MJ-TW2 ignoring boundaries.

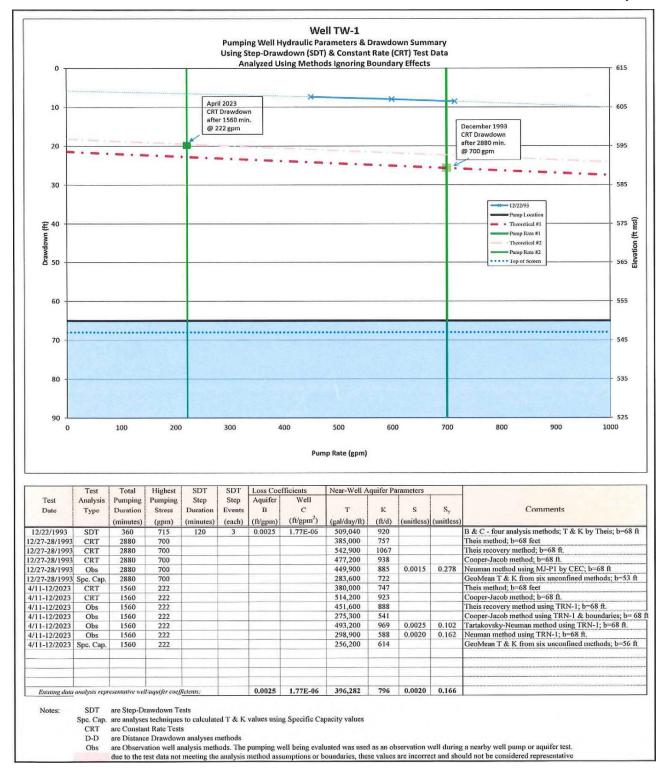


Figure 16. Summary graphic illustrating aquifer coefficients calculated for MJ-TW1 ignoring boundaries.

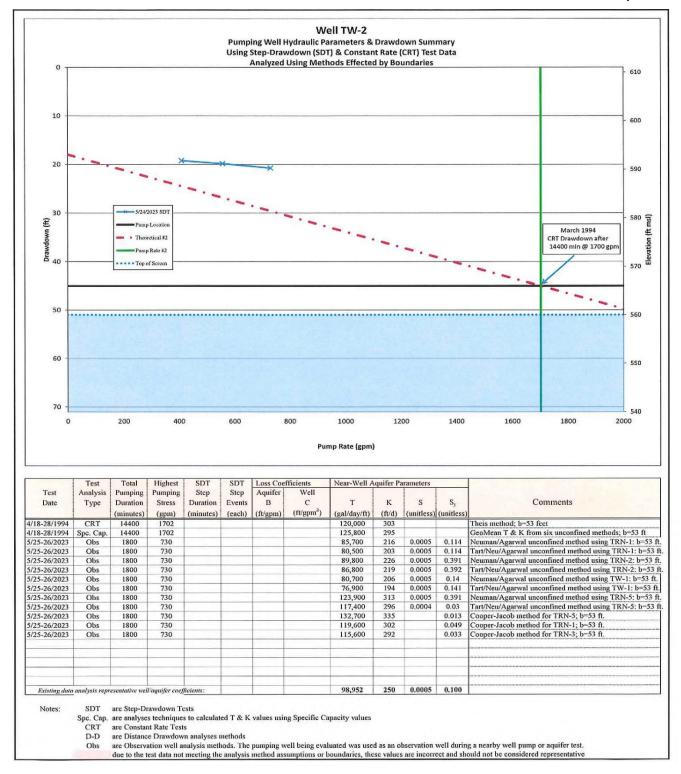


Figure 17. Summary graphic illustrating aquifer coefficients calculated for MJ-TW2 that includes boundary effects.

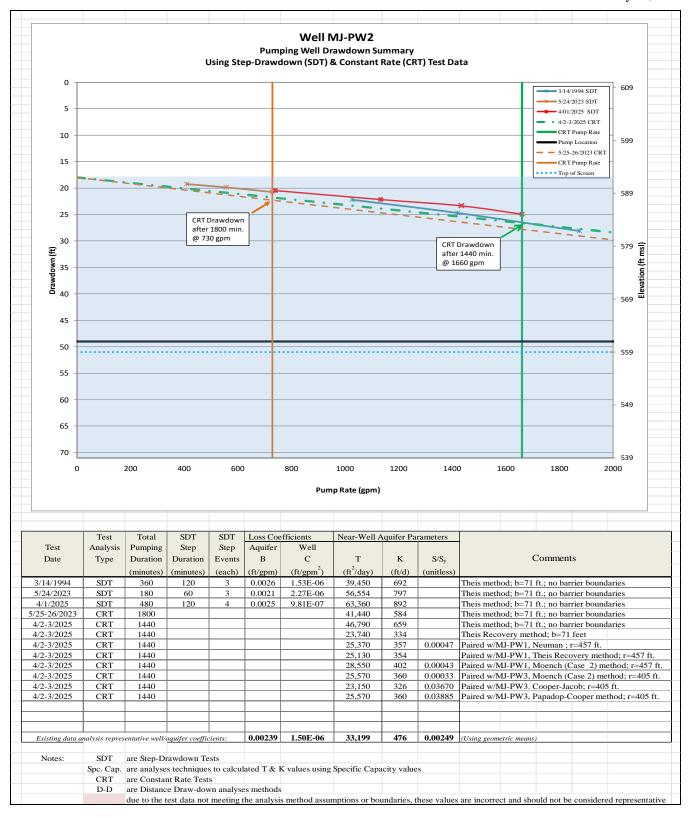


Figure 18. Summary graphic illustrating aquifer coefficients calculated from the 2025 MJ-PW2 CRT data that suggest the onset of boundary effects in the analysis when compared to the earlier SDT results.

Groundwater Quality Results

A groundwater sample was collected from test well MJ-PW2 on April 3, 2025. The sample was collected at the conclusion of the 24-hour constant rate test from a metal sample port located off the pump casing. The lab results for a groundwater samples from test wells TW-1 and TW-2 are also provided for comparison purposes (Tables 4 and 5). A copy of the MJ-PW2 lab results is provided in Attachment #4 of this technical memorandum.

Groundwater samples from MJ-PW2 were analyzed for the water quality parameters of volatile organic compounds (VOCs), synthetic organic compounds (SOCs), total metals (Sb, As, Ba, Be, Cd, Ca, Cr, Cu, Fe, Hg, Pb, Mg, Mn, Ni, Se, Ag, Na, Tl and Zn), fluoride, chloride, total dissolved solids (TDS), alkalinity, pH, sulfate, nitrate, nitrate, cyanide and Polyfluoroalkyl Substances (PFAS) (Tables 4 and 5).

The inorganic metal constituents reported for MJ-PW2 included barium (0.123 mg/L), calcium (108 mg/L), iron (0.029J), magnesium (26.1 mg/L), manganese (0.005J mg/L), sodium (30.7 mg/L) and zinc (0.016 mg/L). General chemistry parameters included total alkalinity (287 mg/L), chloride (59.2 mg/L), fluoride (0.20 mg/L), pH (7.3 s.u.), TDS (456 mg/L), nitrate (0.553 mg/L) and sulfate (50.3 mg/L) (Table 4). All of the reported inorganic constituents are of a natural occurrence, commonly found in soil and groundwater. Of the reported inorganic levels in MJ-PW2, none of the common constituents have exceeded their respective U.S. EPA Maximum Contaminant Levels (MCLs).

Organic constituents analyzed included VOCs, SOCs and PFAS constituents (Tables 4 and 5). No detectable concentrations of VOCs or SOCs were reported for MJ-PW2. The PFAS constituent of perfluorooctane sulfonate (PFOS) was reported at 0.0164 μ g/L, exceeding the MCL of 0.004 μ g/L. Two other PFAS constituents reported included perfluorobutane sulfonate (PFBS) at 0.00226 μ g/L and perfluorooctanoic acid (PFOA) at 0.0024 μ g/L; both PFAS constituents are reported at concentrations below federal action levels.

Two total coliform bacteria water samples were also collected, respectively at 8:30 and 9:00 a.m. at the conclusion of the MJ-PW2 24-hour CRT pump test; both sample results tested negative for total coliform (Table 5).

Table 4. Summary of Analytical Results for Ground Water Samples from MJ-PW2 (and test wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

		T			
PARAMETER	TW-1*	TW-2**	MJ-PW2	MCL	SMCL
Inorganic Parameters	1				
Alkalinity, total (as CaCO ₃) (mg/l)	344	311	287	NA	NA
Antimony, total (mg/l)	ND	< 0.005	< 0.003	0.006	
Arsenic, total (mg/l)	ND	< 0.010	< 0.003	0.010	
Barium, total (mg/l)	0.216	0.127	0.123	2	
Beryllium, total (mg/l)	ND	< 0.001	< 0.001	0.004	
Cadmium, total (mg/l)	0.71	< 0.002	< 0.001	0.005	
Calcium, total (mg/l)	109	114	108		
Chloride (mg/l)	43.3	52.1	59.2		250
Chromium, total (mg/l)	ND	< 0.005	< 0.005	0.1	
Copper, total (mg/l)	ND	< 0.005	0.005J	1.3	1.0
Cyanide, total (mg/l)	ND	< 0.0050	< 0.003	0.2	
Fluoride (mg/l)	ND	0.24	0.20	4	2
Iron, total (mg/l)	2.44	< 0.2	0.029J		0.3
Lead, total (mg/l)	ND	< 0.005	< 0.005	0.015	
Magnesium, total (mg/l)	29.8	28.2	26.1		
Manganese, total (mg/l)	0.365	< 0.100	0.005J		0.05
Mercury, total (mg/l)	ND	NA	< 0.0005	0.002	
Nickel, total (mg/l)	ND	< 0.005	< 0.010		
Nitrate-N as NO3-N (mg/l)	ND	0.59	0.553	10	
Nitrite-N as NO2-N (mg/l)	ND	NA	0.02J	1	
pH (s.u.)	7	8.1	7.3		6.5-8.5
Total Dissolved Solids (mg/l)	529	360	456		500
Selenium, total (mg/l)	ND	< 0.010	< 0.005	0.05	
Silver, total (mg/l)	ND	< 0.002	< 0.010		0.1
Sodium, total (mg/l)	20.7	28.0	30.7		
Sulfate (mg/l)	53.9	39.5	50.3		250
Thallium, total (mg/l)	ND	< 0.050	< 0.001	0.002	
Zinc, total (mg/l)	ND	< 0.160	0.016		5
Volatile Organic Chemicals (VOCs)	•				
Benzene (µg/l)	ND	<1.0	< 0.5	5	
Bromobenzene (µg/l)	ND	<1.0	NA		
Bromochloromethane (µg/l)	ND	<1.0	NA		
Bromodichloromethane (µg/l)	ND	<1.0	NA		
Bromoform (µg/l)	ND	<1.0	NA		
Bromomethane (µg/l)	ND	<1.0	NA		
n-Butylbenzene (μg/l)	ND	<1.0	NA		
sec-Butylbenzene (µg/l)	ND	<1.0	NA		
		11/17		1	

^{*} Sample results from Tetra Tech (2007), ** TW-2 is renamed MJ-PW2.

Table 4. Summary of Analytical Results for Ground Water Samples from MJ-PW2 (and test wells TW-1 and TW-2 for comparison). Middletown-Junction Property, Ohio.

wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.									
PARAMETER	TW-1*	TW-2**	MJ-PW2	MCL	SMCL				
Volatile Organic Chemicals (VOCs) (Contir	ued)			1					
tert-Butylbenzene (µg/l)	ND	<1.0	NA						
Carbon Tetrachloride (µg/l)	ND	<1.0	< 0.5	5					
Chlorobenzene (µg/l)	ND	<1.0	< 0.5	100					
Chloroethane (µg/l)	ND	<1.0	NA						
Chloroform (µg/l)	ND	<1.0	NA						
Chloromethane (µg/l)	ND	<1.0	NA						
2-Chlorotoluene (μg/l)	ND	<1.0	NA						
4-Chlorotoluene (μg/l)	ND	<1.0	NA						
Dibromochloromethane (µg/l)	ND	<1.0	NA						
Dibromomethane (µg/l)	ND	<1.0	NA						
1,2-Dichlorobenzene (µg/l)	ND	<1.0	< 0.5	600					
1,3-Dichlorobenzene (µg/l)	ND	<1.0	NA						
1,4-Dichlorobenzene (µg/l)	ND	<1.0	< 0.5	75					
Dichlorodifluoromethane (μg/l)	ND	<1.0	NA						
1,1-Dichloroethane (μg/l)	ND	<1.0	NA						
1,2-Dichloroethane (μg/l)	ND	<1.0	< 0.5	5					
1,1-Dichloroethene (µg/l)	ND	<1.0	< 0.5	7					
cis-1,2-Dichloroethene (µg/l)	ND	<1.0	< 0.5	70					
trans-1,2-Dichloroethene (μg/l)	ND	<1.0	< 0.5	100					
Dichloromethane (methylene chloride) (µg/l)	0.94	<1.0	< 0.5	5					
1,2-Dichloropropane (μg/l)	ND	<1.0	< 0.5	5					
1,3-Dichloropropane (µg/l)	ND	<1.0	NA						
2,2-Dichloropropane (µg/l)	ND	<1.0	NA						
1,1-Dichloropropene (µg/l)	ND	<1.0	NA						
1,3-Dichloropropene (cis & trans) (µg/l)	ND	<1.0	NA						
1,2-Dibromo-3-chloropropane (µg/l)	ND	< 5.0	NA						
1,2-Dibromoethane (EDB) (µg/l)	ND	<1.0	NA						
Ethylbenzene (µg/l)	ND	<1.0	< 0.5	700					
Fluorotrichloromethane (µg/l)	ND	<1.0	NA						
Hexachlorobutadiene (µg/l)	ND	<1.0	NA						
Isopropylbenzene (μg/l)	ND	<1.0	NA						
p-Isopropyltoluene (μg/l)	ND	<1.0	NA						
Naphthalene (µg/l)	ND	<1.0	NA						
n-Propylbenzene (μg/l)	ND	<1.0	NA						
Styrene (µg/l)	ND	<1.0	< 0.5	100					
1,1,1,2-Tetrachloroethane (µg/l)	ND	<1.0	NA						
1,1,2,2-Tetrachloroethane (µg/l)	ND	<1.0	NA						
Tetrachloroethene (µg/l)	ND	<1.0	< 0.5	5					
Toluene (µg/l)	ND	<1.0	< 0.5	1000					

^{*} Sample results from Tetra Tech (2007), ** TW-2 is renamed MJ-PW2.

Table 4. Summary of Analytical Results for Ground Water Samples from MJ-PW2 (and test wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

PARAMETER	TW-1*	TW-2**	MJ-PW2	MCL	SMCL					
Volatile Organic Chemicals (VOCs) (Continued)										
$1,2,3$ -Trichlorobenzene ($\mu g/l$)	ND	<1.0	NA							
$1,2,4$ -Trichlorobenzene ($\mu g/l$)	ND	<1.0	< 0.5	70						
1,1,1-Trichloroethane (µg/l)	ND	<1.0	< 0.5	200						
1,1,2-Trichloroethane (µg/l)	ND	<1.0	< 0.5	5						
Trichloroethylene (µg/l)	ND	<1.0	< 0.5	5						
1,2,3-Trichloropropane (µg/l)	ND	<1.0	NA							
1,2,4-Trimethylbenzene (µg/l)	ND	<1.0	NA							
1,3,5-Trimethylbenzene (µg/l)	ND	<1.0	NA							
Vinyl Chloride (μg/l)	ND	<1.0	< 0.5	2						
<i>Xylenes, total</i> $(\mu g/l)$	ND	<1.0	< 0.5	10,000						

^{*} Sample results from Tetra Tech (2007), ** TW-2 is renamed MJ-PW2

Table 5. Summary of Analytical Results for Ground Water Samples from MJ-PW2 (and test wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

wells TW-1 and TW-2 for com	parisun), wn 	udiciown-Juni	lion i rope	lty, Omo.	
PARAMETER	TW-1*	TW-2**	MJ-PW2	MCL	SMCL
Synthetic Organic Chemicals (SOCs)					
Alachlor (mg/l)	< 0.000020	NA	< 0.00020	0.002	
Atrazine (mg/l)	< 0.000030	NA	< 0.00030	0.003	
Simazine (mg/l)	< 0.000040	NA	< 0.00035	0.004	
Radiological Parameters	•	1			•
Gross Alpha (pCi/L)	<3	NA	<3		
Gross Beta (pCi/L)	NA	NA	<4		
Radium-226 and Radium-228 (Combined)	3	NA	<1	5 pCi/L	
Uranium	NA	NA	NA	30 pCi/L	
Per and Polyfluoroalkyl Substances (PF.	AS)				1
Perfluorooctanoic acid (PFOA) (µg/L)	NA	< 0.0044	0.0024	0.004	
Perfluorooctane sulfonate (PFOS) (µg/l)	NA	0.014	0.0164	0.004	
Perfluorononanoic acid (PFNA) (µg/L)	NA	< 0.0046	< 0.00188		
Perfluorobutane sulfonate (PFBS) (µg/L)	NA	< 0.0044	0.00226		
Perfluorohexane sulfonate (PFHxS) (μg/L)	NA	< 0.0044	<0.00188	1.0*	
Hexafluoropropylene oxide dimer acid (HFPO-DA) (µg/L)	NA	< 0.0023	<0.00188		
Biological Parameters					
Total Coliform	Negative	NA	Negative		
Fecal Coliform	Negative	NA	NA		
Indicator Parameters	T			T	1
Redox Potential (Eh)	NA	-206.1 mV	NA		
Dissolved Oxygen	NA	5.24 mg/L	NA		
Temperature	NA	14.62°C	NA		
Specific Conductance	NA	820 µmhos/cm	NA		
pH (field)	NA	6.82 s.u.	NA		
Turbidity	NA	0.30 NTU	NA		

Note: Highlighted Results exceed either MCL or SMCL levels.

BDL - Below Detection Limit

MCL - Maximum Contaminant Level

SMCL – Secondary Maximum Contaminant Level

NTU – Nephelometric Turbidity Units* Hazard Index (Unitless)

*Sample results from Tetra Tech (2007), ** TW-2 is renamed MJ-PW02

REFERENCES

- Bierschenk, W.H., 1964. Determining well efficiency by multiple step-drawdown tests, Proceedings of the General Assembly Berkeley, Publication 64, pp 493-507.
- Cooper, H.H., Jr. and C.E. Jacob, 1946, A Generalized Graphical Method of Evaluating Formation Constants and Summarizing Well-Field History: American Geophysical Union, V27, pp. 526-534.
- Kasenow M, 2001. Applied Ground-Water Hydrology and Well Hydraulics: Water Resources Publications, LLC., Highlands Ranch, Colorado, USA, 831 p.
- Moench, A.F., 1985. Transient flow to a large-diameter well in an aquifer with storatitive semi-confining layers, Water Resources Research, vol. 21, no. 8 pp. 1121-1131.
- Moench, A.F. and T.A. Prickett, 1972. Radial flow in an infinite aquifer undergoing conversion from artesian to water-table conditions, Water Resources Research, vol. 8, no. 2, pp. 494-499.
- Neuman, S.P. and P.A. Witherspoon, 1969. Theory of flow in a confined two aquifer system, Water Resources Research, vol. 5, no. 4, pp. 803-816.
- Ohio Environmental Protection Agency, 2023, Guidelines for Design of Small Public Ground Water Systems: Guidance Document prepared by the Ohio EPA, Division of Drinking and Ground Waters, June 2023, 78p.
- Papadopulos, I.S. and H.H. Cooper, 1967. Drawdown in a well of large diameter, Water Resources Research, vol. 3, pp. 241-244.
- Rorabaugh, M.I., 1953. Graphical and theoretical analysis of step-drawdown tests of artesian well, Am. Soc. Of Civil Engineers, vol. 79, No. 362, 23p.
- Terran Corporation, 2022a, Wellfield Production Analysis for the East, Revis, Sod Farm and Thompson Wellfields, Warren County, Ohio: consultant report TB-2203, May 18, 2022, prepared for the Warren County Water & Sewer Dept., 357p.
- Terran Corporation, 2022b, Technical Memorandum for Hydrogeologic Investigation, Middletown Junction Property, Warren County, Ohio: Consultant report, December 8, 2022, prepared for the Warren County Water & Sewer Dept., 72p.
- Terran Corporation, 2023, Technical Memorandum for Test Well TW-2 Evaluation, Middletown-Junction Property, Warren County, Ohio: Consultant report, August 4, 2023, prepared for the Warren County Water & Sewer Dept., 82p.
- Terran Corporation, 2024a, Technical Memorandum for F&T Modeling Evaluation of the Potential Outfall Effluent Impact, Proposed Middletown-Junction Well Field, Warren County, Ohio: Consultant report, January 22, 2024, prepared for the Warren County Water & Sewer Dept., 70p.
- Terran Corporation, 2024b, Technical Memorandum #2 for F&T Modeling Evaluation of the Potential Outfall Effluent Impact, Test Well TW-2 Utilization as Backup Production Well at the Proposed Middletown-Junction Well Field, Warren County, Ohio: Consultant report, March 6, 2024, prepared for the Warren County Water & Sewer Dept., 21p.
- Tetra Tech EM, Inc., 2007, Little Miami River Wellfield Development: Consultant Report prepared for the City of Lebanon, March 6, 2007, 18p.
- Theis, C.V., 1935, The Relation between the lowering of the Piezometric Surface and the Rate and duration of discharge of a Well using Ground-Water Storage: American Geophysical Union Transaction, Vol. 16., pp 519-524.

ATTACHMENT #1

ODNR WELL LOG FOR PRODUCTION WELL MJ-PW2

DNR 7802.93 TYPE OR USE PEN SELF TRANSCRIBING PRESS HARD WELL LOG AND DRILLING REPORT
Ohio Department of Natural Resources, Divison of Water
1939 Fountain Square Drive, Columbus, Ohio 43224 Phone (614) 265-6739
Permit Number_

SELEN OF PROPERTY READ OF 1	a H14	NI PI	PROPERTY ADDRESS FOREST PRESERVE (ADDRESS OF WELL LOCATION A) WER APPRIL 5000 WOFSCHB @ SOUTH LERAND.
OCATION OF PROPERTY BENE OF LITTLE	CONS	STRUC	TION DETAILS
ASING Borehole Diameter 24	in		GROUT
Diameter 16 in. Length 53 ft. Wall Ti	nickness +3		Material Concasts Volume used 3 Cu yo
	nickness	in.	Method of installation Pour # 10 30
ype: Steel Galv. PVC 1 Oth			Depth: placed from
	er		GRAVEL PACK (Filter Pack) Material S1416A Volume used 130 CU FT
oints: Threaded Welded Solvent 2 Oth			Material SILICA Volume used 730 CUFF Method of installation Pour
	er ickness	in	Depth: placed from 45 ft. to 7/
iner: Length Type Wall Th	iicki iess		Pitless Device Adapter Preassembled unit
ype (wire wrapped, louvered, etc.) Wire Wase Mate	ial _ 55		Head Well PRODUCTION TEST
ength 20 ft. Diameter /	6"	in.	☐ Rotary ☐ Cable ☐ Augered ☐ Driven ☐ Dug ☐ Other Buck
et between 5/ ft. and 7/ ft.	Slot . //	0	Date of Completion 3/11/94
WELL LOG*			WELL TEST Balling YPumping' Other
NDICATE DEPTH(S) AT WHICH WATER IS ENCOUNTER	ED.		□ Balling Pumping* □ Other Test rate 1702 gpm Duration of test 10 Days h
Show color, texture, hardness, and formation: sandstone, shale, limestone, gravel, clay, sand, etc.	From	То	Drawdown 26'
		,	Measured from: ★ top of casing □ ground level □ Other
TOP SOIL	0	2	Static Level (depth to water) 18' ft. Date: 3/18 -> 3/28
BROWN CLAY	2'	10	Quality (clear, cloudy, taste, odor)CLEAR
BROWN SANDY CLAY	10	14'	*(Attach a copy of the pumping test record, per section 1521.05, ORC)
BROWN SAND & GRAVEL			PUMP
	,	. /	41.11
NISOME LARGE COBBLES	14	67	Pump set at
GRAY FINE SAND	67	71	Pump installed by
	71'		SKETCH SHOWING WELL LOCATION
GRAY CLAY			Show distances well lies from numbered state highways, street intersections, county roads, etc.
		-	a sent P.A
		L	TW2 FORMER TOWER
			HIAMI
		1 ''	TW2 FORMER PEND CEUT THE
	-	-	150' 300' X
			1 Comment
			A TEST WELL
14-14-14-14-14-14-14-14-14-14-14-14-14-1			
- Alexander - Alex	-	-	w)
4			
(1) (1) (1) (1) (1)			
93C83 MAY 1994		1	M IDDLETOW
	•	-	MIDDLETOW JUNCTION
LOEPT. NAL. RESOURCES.			1 Johnson
MATER AND			s\ \
If additional space is needed to complete well log, use next conse	cutively numb	ered form.	I hereby certify the information given is accurate and correct to the best of my knowledg
Drilling Firm REYNOLDS, INC			Signed E.S. Schlaach.
			Date AFRIL 1, 1994
Address 6451 GERMANTOWN RE)		Date BTRIL 1, 1997

ATTACHMENT #2

MW-PW2 SUBMERSIBLE PUMP PERFORMANCE SHOP DRAWINGS DOCUMENTS

Customer : Envirolutions LLC Reference

Pump Performance Datasheet

American-Marsh Pumps Quotation System 24.6.5

: 13MC Item number : 001 Size Service Stages : 4 Quantity Based on curve number : 13MC : 1 Quote number : 2210666 Basic model number

> Date last saved : 08 Apr 2025 11:26 AM

Operating Conditions		Lic
	4 400 0 110	

Flow, rated Liquid type : Water : 1,100.0 USgpm Differential head / pressure, rated (requested) : 282.0 ft Additional liquid description Differential head / pressure, rated (actual) : 284.4 ft Solids diameter, max : 0.00 in Suction pressure, rated / max : 0.00 / 0.00 psi.g Solids concentration, by volume : 0.00 % NPSH available, rated : Ample : 68.00 deg F Temperature, max Site Supply Frequency : 60 Hz

Performance

: Synchronous Vapor pressure, rated : 0.34 psi.a Speed criteria

: 1750 rpm Speed, rated : 9.69 in Impeller diameter, rated

Impeller diameter, maximum : 9.94 in Impeller diameter, minimum : 8.63 in Efficiency (bowl / pump) : 82.65 / - %

PEI (CL) : -

NPSH required / margin required : 14.36 / 0.50 ft Ns (total flow) / Nss (imp. eye flow) : 2,665 / 7,615 US Units

MCSF : 772.8 USgpm Head, maximum, rated diameter : 336.8 ft Head rise to shutoff (bowl / pump) : 19.42 / - %

Flow, best eff. point (bowl / pump) : 1,296.8 / - USgpm Flow ratio, rated / BEP (bowl / pump) : 84.83 / - %

Diameter ratio (rated / max) : 97.48 % Head ratio (rated dia / max dia) : 91.98 %

: 1.00 / 1.00 / 1.00 / 1.00 Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010]

Selection status : Acceptable

iquid

Fluid density, rated / max : 0.998 / 0.998 g/cm3

Viscosity, rated : 1.00 cP

Material

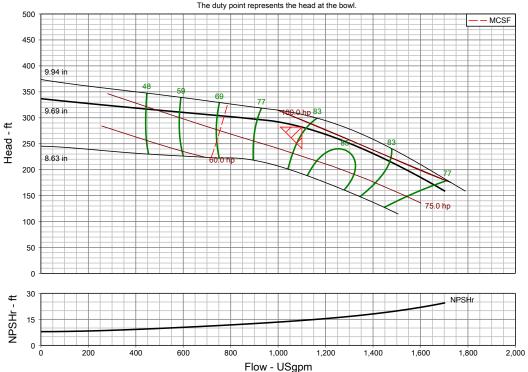
Material selected : Cast iron - Standard

Pressure Data

Maximum working pressure : See the Additional Data page : See the Additional Data page Maximum allowable working pressure

: N/A Maximum allowable suction pressure

Hydrostatic test pressure : See the Additional Data page


Driver & Power Data (@Max density)

Driver sizing specification : Maximum power

Margin over specification : 0.00 % Service factor : 1.15 Power, hydraulic : 78.31 hp Power (bowl / pump) : 94.75 / - hp Power, maximum, rated diameter : 97.25 hp

Minimum recommended motor rating : 100 hp / 74.57 kW

Bowl performance. Adjusted for construction and viscosity.

Radial load limit

Impeller peripheral speed, rated

Customer: Envirolutions LLC **Reference**:

Pump Performance - Additional Data

American-Marsh Pumps Quotation System 24.6.5

Item number: 001Size: 13MCService:Stages: 4Quantity: 1Speed, rated: 1750 rpmQuote number: 2210666Intellicode:

Date last saved : 08 Apr 2025 11:26 AM

Performance Data		Stage, Speed and Solids Limit	s
Head, maximum diameter, rated flow	: 306.6 ft	Stages, maximum	: 21
Head, minimum diameter, rated flow	: 192.1 ft	Stages, minimum	: 1
Head, maximum, rated diameter	: 336.8 ft	Pump speed limit, maximum	: 2200 rpm
Efficiency adjustment factor, total	: 0.99	Pump speed limit, minimum	: 800 rpm
Power adjustment, total	: 0.95 hp	Curve speed limit, maximum	: 2200 rpm
Head adjustment factor, total	: 1.00	Curve speed limit, minimum	: 300 rpm
Flow adjustment factor, total	: 1.00	Variable speed limit, maximum	:-
NPSHR adjustment factor, total	: 1.00	Variable speed limit, minimum	: 100 rpm
User applied performance adjustment	:	Solids diameter limit	: 0.75 in
comments		Energy Indexes	
NPSH margin dictated by pump supplier	: 0.50 ft	Bare pump model number	: 13MC
NPSH margin dictated by user	: 0.00 ft	Basic model number	:-
NPSH margin used (added to 'required' values)	: 0.50 ft	PEI CL/VL	: - / -
Mechanical Limits		ER CL/VL	: - / -
Torque, rated power, rated speed	: 5.41 hp/100 rpm	Typical Driver Data	
Torque, maximum power, rated speed	: 5.56 hp/100 rpm	Driver speed, full load	: 1780 rpm
Torque, driver power, full load speed	: 5.62 hp/100 rpm	Driver speed, rated load	: 1781 rpm
Torque, driver power, rated speed	: 5.62 hp/100 rpm	Driver efficiency, 100% load	: N/A
Torque, pump shaft limit	: 22.99 hp/100 rpm	Driver efficiency, 75% load	: N/A
Radial load, worst case	:-	Driver efficiency, 50% load	: N/A

Impeller peripheral speed limit	; -				
Various Performance Data	Flow (USgpm)	Head (ft)	Efficiency (%)	NPSHr (ft)	Power (hp)
Shutoff, rated	0.00	336.8	-	-	63.47
Shutoff, maximum	0.00	373.7	-	-	71.59
MCSF	772.8	303.2	70.59	11.59	83.78
Rated flow, minimum	1,100.0	192.1	84.56	-	63.08
Rated flow, maximum	1,100.0	306.6	81.87	-	104
BEP flow, rated	1,296.8	251.5	84.72	16.62	97.17
120% rated flow, rated	1,320.0	247.1	84.69	16.94	97.23
End of curve, rated	1,703.9	158.3	74.84	24.52	90.99
End of curve, minimum	1,506.4	114.3	71.61	0.00	60.72
End of curve, maximum	1,789.8	158.5	73.91	27.07	96.88
Maximum value, rated	-	336.8	84.72	-	97.25
Maximum value, maximum	-	-	84.15	-	109
System differential pressure		@	Density, rated	@ Dei	nsity, max

Differential pressure, rated flow, rated (psi)

Differential pressure, shutoff, rated (psi)

Differential pressure, shutoff, rated (psi)

145.7

Differential pressure, shutoff, maximum (psi)

161.7

161.7

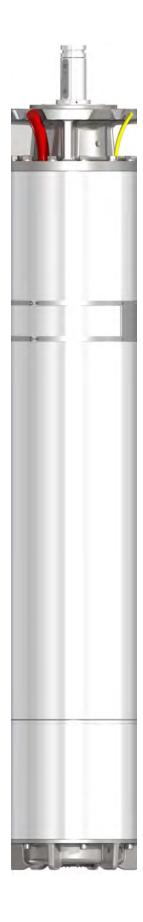
Discharge pressure	@ Suction pressure, rated	@ Suction pressure, max	@ Suction pressure, rated	@ Suction pressure, max
Discharge pressure, rated flow, rated (psi.g)	122.0	122.0	122.0	122.0
Discharge pressure, shutoff, rated (psi.g)	145.7	145.7	145.7	145.7
Discharge pressure, shutoff, maximum (psi.g)	161.7	161.7	161.7	161.7
Ratios				

Maximum flow / rated flow, rated : 154.90 % Head rated diameter / head minimum diameter, rated flow : 146.82 %

Customer : Envirolutions LLC Reference

Pump Performance - Additional Data American-Marsh Pumps Quotation System 24.6.5

	es			Dimensions	
Friction loss rate, column	n	:-		Minimum clearance below suction bell lip/case	: 6.00 in
Friction loss, column		: -		Minimum well diameter	: 0.00 in
Friction loss, discharge h	nead	: -		Suction nozzle centerline height	:-
Friction loss, can/barrel		:-		Suction to first stage impeller centerline	: -
Friction loss, suction bell	l and strainer	: 0.00 ft		Bowl assembly length, first stage	: 23.63 in
Friction loss, bowl/colum	n adaptor	: -		Bowl assembly length, upper stage	: 10.75 in
Friction loss, total		: -		Bowl assembly length, total	: 55.88 in
Power loss, lineshaft bea	arings	: -		Suction bearing hub length	: 0.00 in
Power loss, thrust bearin	ng	: -		Strainer length	: 0.00 in
Power loss, total		:-		Bowl to column adaptor length	:-
Bowl vs. Pump Perforn	nance			Discharge head stick-down	:-
Head (bowl / pump)		: 282.0	ft / -	Submersible motor adaptor length	:-
Efficiency (bowl / pump)		: 82.65	% / -	Submersible motor length	:-
Power (bowl / pump)		: 94.75	hp / -	Column length	:-
NPSH required at first st	age impeller eve	: 14.36	•	Total pump length	: -
Weights and Down Thr	•			Can / barrel length	:-
Weight, lineshaft	-	:-		Stuffing box sleeve diameter	· :-
Weight, bowl assembly r	otating element	: 86.04	lb	Suction bell diameter	: 12.00 in
Thrust factor	olaling oldinoni	: 7.90 lb		Minimum submergence to prevent vortexing	: 24.00 in
Thrust, hydraulic (rated /	/ max)		0 / 2,655.9 lbf	Discharge head height	:-
Thrust, bowl shaft end (r	•	: 0.00 /	•	Discharge nozzle centerline height	:-
Thrust, shaft step (rated	,	: - / -	0.00 101	Min distance discharge nozzle centerline to	: 0.00
Thrust, stuffing box sleev	,	. , :-/-		suction bell	. 0.00
Thrust, total (rated / max	,		1 / 2,741.9 lbf	Lineshaft length	:-
Thrust Limit	()	: -	1 / 2,741.9 101	Bowl shaft diameter	: 1.69 in
* Rated thrust @ rated head, density,	and suction pressure where			Bowl diameter, outside	: 12.13 in
* Max thrust @ max head, density, an				Bowl diameter, exit	: 9.14 in
Pressure Data	Maximum	Maximum	Hydrostatic test	Column diameter inside	:-
	working	allowable	pressure (psi.g)	Column internal obstruction diameter	:-
	pressure (psi.g)	working oressure (psi.ç	1)	Can/barrel diameter, inside	:-
	r		•	·	•
Bowl	· · · · · · · · · · · · · · · · · · ·		345.0	Can/barrel obstruction diameter	
	145.7 -	230.0	345.0	Can/barrel obstruction diameter NPSH	
Column	145.7	230.0	345.0 - -	NPSH	· Ample / 14 36 ft
Column Discharge head	145.7	230.0	-	NPSH NPSH at bowl (available / required)	: Ample / 14.36 ft
Column Discharge head Can/Barrel	145.7	230.0	-	NPSH at bowl (available / required) NPSH at low liquid level (available / required)	: - / -
Column Discharge head Can/Barrel Torque Limits	145.7	230.0 - - -	-	NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required)	•
Column Discharge head Can/Barrel Torque Limits	145.7	230.0	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities	:-/-
Column Discharge head Can/Barrel Torque Limits	145.7	230.0 - - -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity	:-/-
Column Discharge head Can/Barrel Torque Limits	145.7	230.0 - - -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity	:-/- :-/-
Column Discharge head Can/Barrel Torque Limits	145.7	230.0 - - -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity	:-/- :-/- :- :-
Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit	145.7 - - - -	230.0 - - -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity	:-/- :-/-
Column Discharge head Can/Barrel Forque Limits Forque, lineshaft limit	145.7 - - - ditions	230.0	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity	:-/- :-/- :- :- :-
Column Discharge head Can/Barrel Forque Limits Forque, lineshaft limit Additional Design Conversed	145.7 - - - ditions	230.0 - - -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location	: - / - : - / - : - : - : - : - : -
Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit Additional Design Control NSF/ANSI/CAN 61 & 37: Required	145.7 - - - ditions	230.0 - - - : -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location Well Inside Diameter: i	: - / - : - / - : - : - : - : - : -
Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit Additional Design Cone NSF/ANSI/CAN 61 & 373 Required Pump Design	145.7 - - - ditions	230.0 : - NO : Bowl only	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location Well Inside Diameter: i	: - / - : - / - : - : - : - : - : -
Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit Additional Design Cone NSF/ANSI/CAN 61 & 37: Required Pump Design Impeller Type	145.7 - - - ditions	230.0 - - - : -	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location Well Inside Diameter: i	: - / - : - / - : - : - : - : - : -
Bowl Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit Additional Design Cone NSF/ANSI/CAN 61 & 37: Required Pump Design Impeller Type Bowl Options	145.7 - - - ditions	230.0 :- : NO : Bowl only : Enclosed	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location Well Inside Diameter NPSH Measurement Location : E	: - / - : - / - : - / - : - : - : - : - : - : - : - Top of bowl
Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit Additional Design Cone NSF/ANSI/CAN 61 & 373 Required Pump Design Impeller Type Bowl Options Impeller Fastener	145.7 - - - ditions	230.0 :- : NO : Bowl only : Enclosed : Collet	-	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location Well Inside Diameter : i NPSH Measurement Location : E Bowl Suction Connection Size : 8	: - / - : - / - : - / - : - : - : - : - : - : - : - : - Bowl
Column Discharge head Can/Barrel Torque Limits Torque, lineshaft limit Additional Design Cone NSF/ANSI/CAN 61 & 37: Required Pump Design Impeller Type Bowl Options	145.7 - - - ditions	230.0 :- : NO : Bowl only : Enclosed	- - -	NPSH NPSH at bowl (available / required) NPSH at low liquid level (available / required) NPSH at suction flange (available / required) Liquid Velocities Column liquid velocity Discharge head liquid velocity Can liquid velocity Suction nozzle liquid velocity Head Measurement Location Well Inside Diameter NPSH Measurement Location Bowl Suction Connection Size Bowl Suction Type	: - / - : - / - : - / - : - : - : - : - : - : - : - Top of bowl


PLEUGER

Submersible Motors Ranges 6" - 16"

60 Hz

Highest Reliability & Durability Energy Efficiencies up to

Table of Content

About PLEUGER	1
PLEUGER Submersible Motors Key Features	2
PLEUGER PMM Motors Features and Benefits	3
PLEUGER Technologies: Thrust Bearings, VPI, Motor Cooling	5
6 – 16" Motor Range for Low Voltages at SF 1.0	6
6 – 16" Motor Range for Low Voltages at SF 1.15	7
14 - 16" Motor Range for Medium Voltages	8
M6-2 Motor measures & specifications	9
M8-2 Motor measures & specifications	10
M8-4 Motor measures & specifications	11
MI10-2 Motor measures & specifications	12
MI10-4 Motor measures & specifications	13
VNI12-2 Motor measures & specifications	14
VNI12-4 Motor measures & specifications	15
VNI14-2 Motors measures & specifications	16
VNI14-4 Motor measures & specifications	17
MI16-4 Motor measures & specifications	18
PLEUGER Technologies: Motor Sensors	19
Hot water applications & Special Motors	20
PLEUGER Technologies: External Motor cooling	21
Pump Installation Options	22

About PLEUGER

PLEUGER is an international manufacturer and supplier of submersible motors, pumps, thrusters and plunger pumps and related services with headquarters in Hamburg, Germany. Renowned worldwide across the energy, mining, water, industrial processing and the oil & gas industries for absolute reliability and outstanding longevity, our products are designed, engineered and manufactured to solve some of the toughest applications in the most challenging and harshest environments. With over 90 years experience we are experts in electric submersible motors and pumps for various applications in the Water and General Industry, including Mining and Oil & Gas market sector. With German engineering know-how and many years of industry experience, PLEUGER meets the demands of customers worldwide for performance, durability, energy efficiency and total cost of ownership.

PLEUGER CRAFTSMANSHIP

PLEUGER stands for true craftsmanship, combining vision, precision and attention to detail.

From our unique manufacturing processes for stators, to our unrivalled winding capabilities for submersible motors, each element is part of our journey to absolute perfection.

Nothing is more important to us than the reliability and durability of our products.

DESIGN & ENGINEERING

PLEUGER believes in total reliability and the very best quality. We achieve this through precision design and engineering. Proven throughout our decades of experience in consulting, engineering and manufacturing for the most demanding applications around the world.

We offer you the best fit for your submersible pump solution. Engineered for performance. Built to last.

TECHNOLOGIES

Our design engineers, production engineers and data analysts are always investigating how new technologies, materials and approaches can enhance what we do, to maximise performance and reliability and minimize energy consumption.

PLEUGER submersible pump units keep critical systems running across the world in energy, drinking water, industrial processes, dewatering and geothermal heating applications.

PLEUGER SUBMERSIBLE PUMPS

Best-in-class submersible pumps built for reliability and performance.

PLEUGER Motors/

PLEUGER Submersible Motors — Made in Germany

As a manufacturer of world-class submersible motors, every PLEUGER product is designed, engineered and manufactured to the highest standards for efficiency, corrosion protection, and an extended power range.

Standard Motors

- 6" to 50"
- Induction motor, Asynchronous motor
- Power output: 5.5 kW to 5 MW (7.4 HP to 6,705 HP)
- Operating speed: 200 to 3600 rpm 2,4,6,8 pole designs
- 200 V to 6.6 kV / 50 and 60 Hz

PMM Motors

- 6" to 8"
- Synchronous motor
- Power output: 4.0 to 165 kW (5.36 to 221 HP), 200 kW (268 HP) on request
- Operating speed: 2100 to 3600 rpm (max 3800 rpm)4 pole design
- Driven by Variable Frequency Drive (VFD)
- VFD input voltage 400 to 500 V / 70 and 120 Hz

Key Features

- Water-filled motors as standard
- Oil-filled motors on request
- Rewindable
- Operating temperatures: -20°C to +50°C / -4°F to +122°F, on request -30°C to +85°C / +22°F to +185°F
- Suitable for VFD operation

International Design Standards

Design Standards: ANSI / ASTM / DIN / ISO / Hydraulic Institute / CE / API 610

Hydraulic Standards: ANSI/HI / EN ISO / API610 /

NFPA20

Electrical Standards: NEMA / IEC / IEEE

Certifications: DNV GL / ABS / CSA / ATEX/ NSF61

Approvals: ISO 9001

PLEUGER. Reliable. Always.

Made in Germany

High-performance pumps with increased efficiency of up to 85% (average η opt > 83%) available

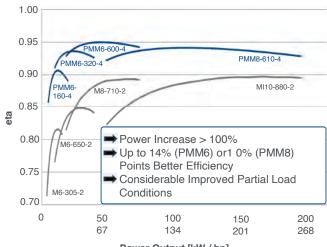
PLEUGER PMM Motors

Our engineers and analysts are always investigating how new technologies, materials and approaches can enhance what we do, to maximise performance and reliability and minimize energy consumption.

PLEUGER PMM motors are rewindable, synchronous electric motors with significant Increase of Motor Efficiency (up to 95%) and Power Output.

Available from 4 kW (5.4 HP) to 165 kW (to 221 HP), 200 kW (268 HP) on reguest with efficiencies up to 94%

- Designed to minimize life cycle costs
- Design based on the reliable PLEUGER asynchronous / induction motor
- Operated via variable frequency drive (VFD) ensures most efficient operation
- PLEUGER offers the complete system of pump, motor and VFD


PLEUGER PMM Motors

Designed for increased performance and reduced life-cycle costs.

Features and Benefits

- Up to 14 percent points better efficiency than asynchronous motors
- Increased power output of more than 100%, motors allow smaller unit sizes with reduced installation costs
- Wide efficiency curves drastically reduce number of motor sizes and simplify storage
- No special VFD required; standard VFDs from various manufacturers can be used
- No sinus filter or du/dt filter required, reduce investment and energy cost

Power Output [kW / hp]

Motor Type	Power Output * kW (HP)	Current *	Efficiency *	Cos Phi *	Length, L mm (inch)	Diameter, D mm (inch)	Weight kg (lb)	Maximum Pe Thrust ki	
	KW (III)		/6		mm (mon)	mm (mon)	ing (ib)	Down	Up
	4.0 (5.4)	8.2	87.0%	0.995					
	5.5 (7.4)	11.0	89.0%	0.990					
PMM6-160-4	9.2 (12.3)	17.9	91.0%	0.975	696 (27.40)	144 (F 660)	46 (101)	07.5 (0100)	C (10E0)
PIVIIVIO-100-4	11.0 (14.3)	21.5	91.5%	0.965	096 (27.40)	144 (5.669)	46 (101)	27.5 (6100)	6 (1350)
	13.0 (17.4)	25.5	91.0%	0.955					
	15.0 (20.1)	29.0	91.0%	0.940					
	15.0 (20.1)	28.5	92.5%	0.990					
	18.5 (24.8)	35.0	93.0%	0.985					
	22.0 (29.5)	41.5	93.5%	0.975					
PMM6-320-4	26.0 (34.9)	48.5	93.5%	0.970	956 (22 70)	144 (5.669)	64 (141)	27.5 (6100)	6 (1250)
PIVIIVI0-320-4	30.0 (40.2)	57.0	93.0%	0.960	856 (33.70)	144 (5.669)	64 (141)	27.5 (6100)	6 (1350)
	33.0 (44.3)	63.0	93.0%	0.950					
	37.0 (49.6)	71.0	92.5%	0.935					
	40.0 (53.6)	77.0	92.5%	0.925					
	40.0 (53.6)	79.0	94.5%						
	46.0 (61.7)	92.0	94.5%	0.970					
	50.0 (67.1)	100.0	94.5%	0.965	1100				
PMM6-600-4	55.0 (73.8)	110.0	94.5%	0.960	1136 (44.72)	144 (5.669)	101 (223)	27.5 (6100)	6 (1350)
	60.0 (80.5)	121.0	94.5%	0.950	(44.72)				
	68.0 (91.2)	137.0	94.5%	0.935					
	75.0 (100.6)	153.0	94.0%	0.920					
	75.0 (100.6)	140.0	93.5%	0.985					
	83.0 (111.3)	153.0	94.0%	0.985					
	90.0 (120.7)	166.0	94.0%	0.985					
PMM8-610-4	110.0 (147.5)	205.0	94.0%	0.975	1438	186 (7.323)	179 (395)	40.0	12.5
F IVIIVIO-0 I U-4	140.0 (187.7)	260.0	94.0%	0.960	(56.61)	100 (7.323)	179 (395)	(9000)***	(2800)
	165.0 (221.0)	285.0	93.0%	0.940					
	**								

^{*} at 120 Hz and 3600 rpm, max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, at Service Factor 1.0

^{**} up to 200.0 (268) on request, *** max downthrust capacity 80KN/17,985 lbf on request

PLEUGER Standard and PMM Motors

Flat- or round cable

Space-saving cable design. Certified for drinking water applications.

NEMA or IEC flange connection

Universal connector to standard hydraulics.

Motor housing

Cast housing designed for reliability, corrosion resistance, strength and durability.

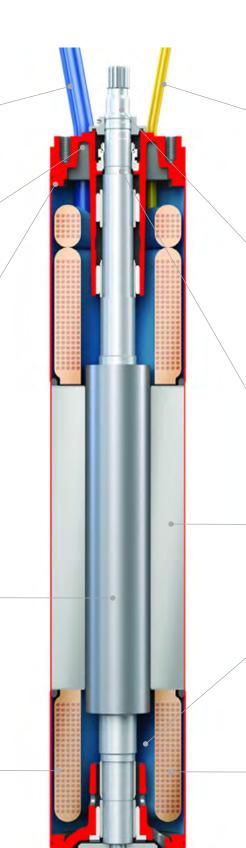
Induction Motor: Squirrel Cage Rotor for Asynchronous Motor

or

Permanent Magnet Motor: Rotor equipped with Permanent Magnets for Synchronous Motor

- Up to 14 % points higher motor efficiency compared to asynchronous motors, through reduction in copper loss
- Hermetically sealed rotor ensures protection of magnets against corrosion and mechanical damage
- Up to 200 kW (268 HP) available

Rewindable winding


Ease of maintenance and cost saving. PE or PE2 insulation.

PE2+PA insulation for optimized winding lifetime.

Breather diaphragm

Liquid pressure compensation to extend the service life of the mechanical seal and O-ring.

PLEUGER. Reliable. Always.

Signal Cable (Optional)

Used with temperature sensor PT100 For monitoring motor temperature.

Motor Shaft End

Standard duplex stainless steel for best combination of corrosion resistance, mechanical strength and stiffness. Special materials available upon request.

Mechanical Seal

High-grade SIC/SIC/Viton® as standard ensures wear resistance and ultra-low maintenance requirements.

Stator Tube

Standard 316 stainless steel construction for excellent corrosion resistance over the service life. Special materials available on request.

Motor Filling

Prefilled and tested with water/ glycol mixture, or potable water on request.

Thrust Bearing

Heavy-duty, custom polymer to ensure ultra-low maintenance and maximum reliability

PLEUGER Technologies/

Thrust Bearings

PLEUGER motors are equipped with heavy duty motor axial thrust bearings made of high-performance polymers for highest axial thrust loads ensuring extraordinary lifetime and reliability.

- Developed by PLEUGER Industries
- Benchmark in submersible motor technology
- In operation since 2013
- Custom Polymer Material
- Heavy-duty design, up to 300kN axial thrust
- Ensures extraordinary lifetime of motor

Advantages

- Tilting pads made of proprietary synthetic material
- Rotating runner made of Stainless Steel
- Increase of lifetime
- Maintenance free
- Allowed axial thrust increased by 100% (up to 300kN)
- Lower absorbed power by 20%

- Increased wear resistance by using new polymers
- Improved dry run capabilities
- Increased water hammer resistance
- Lower starting torque
- Bi-directional operation
- High temperature resistance
- No contamination based on carbon wear

VPI

ROTOR MANUFACTURE - VACUUM PRESSURE IMPREGNATION (VPI)

The manufacture of our rotors includes a vacuum pressure impregnation process that ensures complete penetration of the epoxy into the micro laminations which are used to build up the layers of the rotor.

The VPI process results in a far stronger and more durable construction than traditional processes, allowing for final milling and honing to ensure the perfect rotor balance.

Due to the vacuum, air and moisture between the rotor laminations are extracted and replaced by liquid epoxy resin.

This prevents the occurrence of harmful:

- imbalance due to air pockets during operation of the motor
- corrosion between the rotor blades

The subsequent heat treatment of the rotor solidifies the already impregnated rotor pack into a solid block, which further increases the stiffness of the complete rotor.

Consequently, the bending of the rotor and thus the bending moment in the radial bearings are reduced, which leads to a longer service life of the bearings and thus of the motor.

COOLING CIRCUIT

Efficient Motor Cooling

- internal cooling system manufactured with a highly efficient cooling impeller
- Customized impeller for each motor size
- The design ensures sufficient thermal motor reserves and minimizes energy losses
- Re-windable / water filled
- Sealed winding wire (PE, PE+PA, etc.)

Cooling and lubrication options:

- Water-Glycol Mixture (standard)
- Drinking Water
- Pure Glycol
- Oil

Glycol plus additives prevent corrosion and serve as anti freeze, as well as being environmentally safe.

PLEUGER. Reliable. Always.

Pleuger Submersible Motor range for Low Voltages

SF 1.0

						-										C:		
		ver Ou	•	equer	-	Curren			Length	D -			E	fficienc	У			otor leads
	Model d.o.l.	HP ³⁾	Voltage V ⁴⁾ - 3Ph	Lo. I	Speed		hrust Cap		1	1	wer Fac		1/1	2/4	1/2	No. of leads	Length	Cross section
	d.o.i. M6-160-2	8.5	460	Hz 60	RPM 3440	A 13.3	Down(lbf) ⁵⁾ 2800		21.81	0.810	0.765	1/2 0.670	0.745	3/4 0.755	0.730	shape 1Fl	ft 9.8	mm² 4x2,5
	M6-200-2	11.5	460	60	3430	16.8	2800	1350 1350	23.39	0.830	0.765	0.705	0.745	0.733	0.765	1FI	9.8	4x2,5 4x2,5
	M6-240-2	15	460	60	3430	21	2800	1350	24.96	0.830	0.790	0.703	0.800	0.780	0.703	1FI	9.8	4x2,5 4x2,5
	M6-270-2	17.5	460	60	3425	24	2800	1350	26.14	0.835	0.790	0.700		0.810	0.790	1FI	9.8	4x2,5 4x2,5
l S	M6-305-2	21	460	60	3420	29	2800	1350	27.52	0.845	0.795	0.715		0.820	0.805	1FI	9.8	
ដ	M6-340-2	24	460	60	3420	33	2800	1350	28.90	0.845	0.810	0.730			0.805	1FI	9.8	4x2,5 ¹⁾ 4x2,5 ¹⁾
Motors	M6-400-2	29.5	460	60	3415	39.5	2800	1350	31.26	0.855	0.820	0.725		0.830	0.820	1Fl	9.8	4x4 ¹⁾
9	M6-460-2	35	460	60	3430	47	6100	1350	34.49	0.840	0.800	0.733			0.825	1FI	9.8	4x6
9	M6-530-2	41.5	460	60	3425	55	6100	1350	37.24	0.850	0.810	0.725		0.845	0.835	1Fl	9.8	4x6 ¹⁾
	M6-600-2	48.5	460	60	3425	63	6100	1350	40.00	0.850	0.810	0.720		0.850	0.840	1Fl	9.8	4x10
	M6-650-2	53.5	460	60	3415	70	6100	1350	41.97	0.860	0.825	0.745	0.835	0.850	0.840	1Fl	9.8	4x101)
	M6-720-2	60.5	460	60	3415	78	6100	1350	44.72	0.860	0.825	0.740	0.840	0.850	0.845	1Fl	9.8	4x10 ¹⁾
	M8-330-2	53.5	460	60	3470	70	17985	2800	40.87	0.855	0.840	0.790	0.840	0.850	0.835	1Fl	16.4	4x10 ¹⁾
	M8-410-2	64.5	460	60	3485	83	17985	2800	44.02	0.855	0.840	0.785		0.855	0.835	1Fl	23.0	4x16
	M8-480-2	74	460	60	3490	92	17985	2800	46.77	0.870	0.845	0.785	0.865	0.865	0.840	1Fl	23.0	4x16 ¹⁾
	M8-530-2	80.5	460	60	3485	102	17985	2800	48.74	0.860	0.850	0.795			0.845	1Fl	23.0	4x16 ¹⁾
	M8-580-2	88.5	460	60	3490	111	17985	2800	50.71	0.875	0.855	0.800		0.860	0.845	1Fl	23.0	4x16 ¹⁾
	M8-650-2	94	460	60	3495	116	17985	2800	53.46	0.875	0.855	0.805			0.845	1Rd	23.0	4x25
	M8-710-2	107	460	60	3490	133	17985	2800	55.83	0.850	0.835	0.780	0.885	0.890	0.885	1Rd	23.0	4x25 1)
	M8-820-2	121	460	60	3490	149	17985	2800	60.16	0.855	0.845	0.795	0.885	0.890	0.885	4Rd	23.0	1x16P1)
Ś	M8-930-2	134	460	60	3495	165	17985	2800	64.49	0.850	0.835	0.785	0.895	0.895	0.885	4Rd	23.0	1x25P
5	M8-990-2	142	460	60	3500	175	17985	2800	66.85	0.850	0.830	0.775	0.895	0.895	0.885	4Rd	23.0	1x25P
Motors	M8-135-4	6.5	460	60	1750	10.5	17985	2800	33.19	0.765	0.685	0.565	0.750	0.750	0.720	1Fl	23.0	4x2.5
	M8-170-4	9	460	60	1755	14.3	17985	2800	34.57	0.745	0.665	0.540	0.780	0.775	0.740	1Fl	23.0	4x2.5
- - -	M8-210-4	12	460	60	1755	18.8	17985	2800	36.14	0.750	0.675	0.555	0.800	0.800	0.775	1Fl	23.0	4x2.5
	M8-280-4	18	460	60	1750	26.5	17985	2800	38.90	0.800	0.730	0.615	0.795	0.805	0.790	1Fl	23.0	4x2.5
	M8-340-4	24	460	60	1750	35	17985	2800	41.26	0.790	0.720	0.605	0.815	0.820	0.805	1Fl	23.0	4x4
	M8-420-4	29.5	460	60	1745	41	17985	2800	44.41	0.810	0.750	0.645	0.830	0.840	0.825	1Fl	23.0	4x41)
	M8-520-4	35	460	60	1750	48.5	17985	2800	48.35	0.800	0.740	0.630	0.840	0.845	0.835	1Fl	23.0	4x6
	M8-700-4	49.5	460	60	1745	69	17985	2800	55.43	0.820	0.765	0.655	0.820	0.835	0.825	1Fl	23.0	4x10 ¹⁾
	M8-870-4	60	460	60	1750	84	17985	2800	62.13	0.795	0.735	0.620	0.850	0.850	0.835	1Fl	23.0	4x16
	M8-1050-4	72.5	460	60	1750	101	17985	2800	73.15	0.785	0.720	0.600	0.855	0.855	0.840	1Fl	23.0	4x16 ¹⁾
	MI10-420-2	121	460	60	3465	156	17985	5000	53.27	0.830	0.800	0.720		0.885	0.875	4Rd	23.0	1x25P
	MI10-490-2	141	460	60	3470	179	17985	5000	56.02	0.835	0.800	0.720	0.880	0.885	0.875	4Rd	23.0	1x25P1)
	MI10-600-2	177	460	60	3465	220	17985	5000	60.35	0.850	0.820	0.745			0.880	4Rd	23.0	1x35P1)
	MI10-740-2	221	460	60	3470	275	17985	5000	65.87	0.845	0.810	0.730	0.890	0.895	0.885	4Rd	23.0	1x50P 1) 2)
	MI10-880-2	268	460	60	3470	330	17985	5000	71.38	0.845	0.805	0.725		0.895	0.885	3/4Rd		1x25PII 1)
tors	MI10-960-2	295	460	60	3460	360	17985	5000	74.53	0.860	0.835	0.765	0.890	0.895		3/4Rd		1x25PII ¹⁾
	MI10-1070-2	322	460	60	3465	395	17985	5000	78.86	0.860	0.830	0.760			0.885			1x25PII 1)
Š	MI10-1200-2	355	460	60	3475	435	17985	5000	83.98	0.855	0.820	0.745		0.895	0.890			1x35PII 1)
=	MI10-420-4	50	460	60	1750	66	17985	5000	53.27	0.805	0.765	0.685		0.875		1Fl	23.0	4x10
10"	MI10-420-4	72	460	60	1740	98	17985	5000	53.27	0.805	0.770	0.680			0.865	1Fl	23.0	4x16 ¹⁾
	MI10-490-4	88 11E	460	60 60	1735 1730	118 154	17985 17985	5000	56.02 60.35	0.810	0.780 0.785	0.695		0.875 0.875		4Rd	23.0	1x16P
	MI10-600-4	115	460 460				17985	5000				0.705 0.690			0.880	4Rd		1x25P
	MI10-740-4 MI10-880-4	145 177	460 460	60 60	1730 1735	193 235	17985	5000	65.87 71.38	0.810	0.775 0.780	0.695		0.880		4Rd 4Rd	23.0	1x25P ¹⁾ 1x35P ¹⁾
	MI10-860-4	193	460	60	1735	255	17985	5000	74.53	0.810	0.775	0.695		0.885		4Rd	23.0	1x35P ¹⁾
	MI10-300-4	212	460	60	1735	280	17985	5000	78.86	0.810	0.775	0.690			0.880	4Rd	23.0	1x50P ¹⁾²⁾
	MI10-1070-4	241	460	60	1735	320	17985	5000	83.98	0.805	0.770	0.685		0.890		4Rd		1x50P 1) 2)
	VNI12-65-2	248	460	60	3495	300	26977	5000	67.48	0.875	0.860	0.815		0.880	0.860	2Rd		3/4x25II ¹⁾
	VNI12-05-2 VNI12-75-2	288	460	60	3495	345	26977	5000	71.42	0.880	0.870	0.830			0.860	2Rd		3/4x35II ¹⁾
	VNI12-90-2	322	460	60	3505	385	26977	5000	77.32	0.880	0.860	0.810		0.880		2Rd		3/4x50ll ¹⁾
6	VNI12-65-4	168	460	60	1720	215	26977	5000	67.48	0.825	0.805	0.745		0.885		1Rd		4x50 ¹⁾
2"6)	VNI12-75-4	201	460	60	1720	260	26977	5000	71.42	0.825	0.810	0.750		0.885				3/4x25II ¹⁾
_	VNI12-90-4	248	460	60	1720	320	26977	5000	77.32	0.825	0.810	0.755		0.890				3/4x35II ¹⁾
	VNI12-100-4	275	460	60	1720	350	26977	5000	81.26	0.830	0.810	0.755		0.890		2Rd		3/4x35II ¹⁾
	VNI12-110-4	308	460	60	1720	400	26977	5000	85.20	0.825	0.805	0.740	0.880	0.890	0.885	2Rd	32.8	3/4x50II1)
	VNI12-120-4	350	460	60	1715	450	26977	5000	89.13	0.830	0.815	0.750	0.870	0.885	0.885	2Rd		3/4x50II1)
	VNI14-50-2	288	460	60	3500	355	33721	9000	71.81	0.850	0.850	0.810	0.895	0.890	0.870	2Rd		3/4x35ll ¹⁾
	VNI14-60-2	322	460	60	3515	395	33721	9000	75.75	0.850	0.835	0.780	0.895	0.890	0.865	2Rd		3/4x50II1)
6	VNI14-50-4	177	460	60	1730	230	33721	9000	71.81	0.810	0.790	0.720	0.880	0.885	0.875	1Rd	32.8	4x70
14"6)	VNI14-60-4	214	460	60	1730	280	33721	9000	75.75	0.820	0.800	0.735	0.880	0.885	0.875	1Rd	32.8	4x70 1)
<u> </u>	VNI14-70-4	241	460	60	1730	310	33721	9000	79.09	0.820	0.795	0.735		0.885		2Rd	32.8	3/4x35II1)
1	VNI14-80-4	275	460	60	1730	355	33721	9000	83.62	0.820	0.800	0.730		0.890		2Rd		3/4x35II1)
1	VNI14-90-4	308	460	60	1735	400	33721	9000	87.56	0.820	0.795	0.725		0.890		2Rd		3/4x50II ¹⁾
	VNI14-100-4	335	460	60	1735	430	33721	9000	91.50	0.820	0.795	0.725		0.890				3/4x50II ¹⁾
99	MI16-65-4	322	460	60	1725	425	33721	9000	78.11	0.800	0.790	0.735	0.890	0.900	0.895	2Rd	32.8	3/4x50II ¹⁾
16																		
																		-14/-6% other

1) Cable must be submerged, 2) PE conductor outside the motor, 3) max. water temperature: 30° C/86°F, min. water velocity at motor surface: 0.5 m/s /1.64 ft/s, 4) +14/-6%, other voltages up to 1000V on request, 5) max. value for thrust bearing only, motor values see pages "motor measures & specifications", 6) higher power output on request

Pleuger Submersible Motor range for Low Voltages

SF 1.15

		ver Ou	•	eque	-	Curre			Length				E	fficienc	у	Stand	lard m	otor leads
	Model		Voltage		Speed	ı	Thrust Cap				wer Fac		ı			No. of leads	Length	Cross section
	d.o.l.	HP ³⁾	V ⁴⁾ - 3Ph		RPM	Α	Down(lbf) ⁵⁾			1/1	3/4	1/2	1/1	3/4	1/2	shape	ft	mm ²
	M6-160-2	7.5	460	60	3470	11.6	2800	1350	21.81	0.790	0.730	0.630	0.755	0.750	0.715	1Fl	9.8	4x2,5
	M6-200-2	10	460	60	3460	14.9	2800	1350	23.39	0.815	0.770	0.670		0.780	0.750	1Fl	9.8	4x2,5
	M6-240-2	12.5	460	60	3460	18.3	2800	1350	24.96	0.810	0.760	0.665	0.805	0.805	0.780	1Fl	9.8	4x2,5
ί	M6-270-2	15	460	60	3450	21.5	2800	1350	26.14	0.820	0.775	0.685	0.815	0.820	0.795	1Fl	9.8	4x2,5
ᅙ	M6-305-2	18	460	60	3450	25	2800	1350	27.52	0.830	0.785	0.695	0.810	0.815	0.795	1Fl	9.8	4x2,51)
Motors	M6-340-2	21	460	60	3450	28.5	2800	1350	28.90	0.830	0.785	0.690	0.820	0.825	0.805	1Fl	9.8	4x2,51)
	M6-400-2	25.5	460	60	3450	34.5	2800	1350	31.26	0.840	0.795	0.700	0.825	0.830	0.815	1Fl	9.8	4x41)
<u>.</u> 9	M6-460-2	30.5	460	60	3460	41	6100	1350	34.49	0.820	0.770	0.670	0.835	0.840	0.815	1Fl	9.8	4x6
	M6-530-2	36	460	60	3450	48.5	6100	1350	37.24	0.830	0.785	0.685	0.840	0.840	0.825	1Fl	9.8	4x61)
	M6-600-2	42	460	60	3450	56	6100	1350	40.00	0.830	0.785	0.685	0.845	0.850	0.830	1Fl	9.8	4x10
	M6-650-2	47	460	60	3440	62	6100	1350	41.97	0.845	0.805	0.715	0.845	0.850	0.835	1Fl	9.8	4x10 ¹⁾
	M6-720-2	52.5	460	60	3445	69	6100	1350	44.72	0.845	0.800	0.705	0.845	0.850	0.835	1Fl	9.8	4x10 ¹⁾
	M8-330-2	46.5	460	60	3495	61	17985	2800	40.87	0.855	0.830	0.765	0.845	0.845	0.825	1Fl	16.4	4x10 ¹⁾
	M8-410-2	55.5	460	60	3505	72	17985	2800	44.02	0.850	0.825	0.760	0.855	0.850	0.825	1Fl	23.0	4x16
	M8-480-2	64.5	460	60	3505	81	17985	2800	46.77	0.860	0.830	0.760	0.865	0.860	0.830	1Fl	23.0	4x16 ¹⁾
	M8-530-2	70	460	60	3505	89	17985	2800	48.74	0.855	0.835	0.770	0.860	0.860	0.830	1Fl	23.0	4x16 ¹⁾
	M8-580-2	77	460	60	3505	98	17985	2800	50.71	0.865	0.840	0.775	0.855	0.860	0.835	1Fl	23.0	4x16 ¹⁾
	M8-650-2	82	460	60	3510	102	17985	2800	53.46	0.870	0.840	0.780	0.865	0.860	0.835	1Rd	23.0	4x25
	M8-710-2	94	460	60	3505	117	17985	2800	55.83	0.845	0.820	0.760	0.890		0.880	1Rd	23.0	4x25 ¹⁾
	M8-820-2	105	460	60	3505	129	17985	2800	60.16	0.850	0.830	0.775		0.890	0.880	4Rd	23.0	1x16P1)
Š	M8-930-2	117	460	60	3510	144	17985	2800	64.49	0.845	0.820	0.760		0.895	0.880	4Rd	23.0	1x25P
ō	M8-990-2	123	460	60	3515	153	17985	2800	66.85	0.840	0.815	0.745	0.900	0.895	0.880	4Rd	23.0	1x25P
Motors	M8-135-4	5.5	460	60	1760	9.3	17985	2800	33.19	0.715	0.630	0.510	0.755	0.740	0.695	1Fl	23.0	4x2.5
	M8-170-4	7.5	460	60	1765	12.7	17985	2800	34.57	0.695	0.610	0.485	0.780	0.765	0.720	1Fl	23.0	4x2.5
-∞	M8-210-4	10.5	460	60	1760	17.3	17985	2800	36.14	0.725	0.640	0.520			0.755	1Fl	23.0	4x2.5
	M8-280-4	15.5	460	60	1755	23.5	17985	2800	38.90	0.765	0.690	0.565		0.800	0.775	1Fl	23.0	4x2.5
	M8-340-4	21	460	60	1755	31.5	17985	2800	41.26	0.755	0.680	0.560	0.820	0.820	0.795	1Fl	23.0	4x4
	M8-420-4	25.5	460	60	1755	36.5	17985	2800	44.41	0.780	0.715	0.600	0.835	0.835	0.815	1Fl	23.0	4x41)
	M8-520-4	30	460	60	1755	43.5	17985	2800	48.35	0.770	0.705	0.585	0.845	0.845	0.825	1Fl	23.0	4x6
	M8-700-4	43	460	60	1755	61	17985	2800	55.43	0.795	0.730	0.610	0.830	0.835	0.815	1Fl	23.0	4x10 ¹⁾
	M8-870-4	52.5	460	60	1755	75	17985	2800	62.13	0.770	0.695	0.575	0.850	0.850	0.825	1Fl	23.0	4x16
	M8-1050-4	63	460	60	1760	91	17985	2800	73.15	0.755	0.680	0.560	0.855	0.855	0.830	1Fl	23.0	4x161)
	MI10-420-2	105	460	60	3485	136	17985	5000	53.27	0.820	0.775	0.680	0.880	0.880	0.865	4Rd	23.0	1x25P
	MI10-490-2	122	460	60	3490	157	17985	5000	56.02	0.820	0.775	0.680	0.885	0.885	0.865	4Rd	23.0	1x25P1)
	MI10-600-2	154	460	60	3485	194	17985	5000	60.35	0.840	0.800	0.715	0.885	0.890	0.875	4Rd	23.0	1x35P1)
	MI10-740-2	192	460	60	3490	240	17985	5000	65.87	0.830	0.785	0.695	0.895	0.890	0.875	4Rd	23.0	1x50P 1) 2)
	MI10-880-2	233	460	60	3490	295	17985	5000	71.38	0.830	0.780	0.685	0.895	0.895	0.880	3/4Rd	32.8	1x25PII 1)
δ	MI10-960-2	256	460	60	3480	315	17985	5000	74.53	0.850	0.815	0.735	0.895	0.895	0.880	3/4Rd	32.8	1x25PII 1)
tors	MI10-1070-2	280	460	60	3485	345	17985	5000	78.86	0.850	0.810	0.730	0.895	0.895	0.880	3/4Rd	32.8	1x25PII 1)
	MI10-1200-2	308	460	60	3490	385	17985	5000	83.98	0.840	0.795	0.710	0.895	0.895	0.880	3/4Rd	32.8	1x35PII 1)
Σ	MI10-420-4	43	460	60	1760	58	17985	5000	53.27	0.790	0.740	0.645	0.875	0.870	0.850	1Fl	23.0	4x10
10"	MI10-420-4	63	460	60	1750	86	17985	5000	53.27	0.790	0.740	0.640	0.865	0.870	0.860	1Fl	23.0	4x161)
_	MI10-490-4	76.5	460	60	1745	103	17985	5000	56.02	0.795	0.755	0.660	0.875	0.880	0.870	4Rd	23.0	1x16P
	MI10-600-4	100	460	60	1740	135	17985	5000	60.35	0.805	0.760	0.670	0.865	0.875	0.870	4Rd	23.0	1x25P
	MI10-740-4	126	460	60	1745	169	17985	5000	65.87	0.800	0.750	0.655	0.875	0.880	0.875	4Rd	23.0	1x25P1)
	MI10-880-4	154	460	60	1745	205	17985	5000	71.38	0.800	0.755	0.660	0.875	0.885	0.875	4Rd	23.0	1x35P1)
	MI10-960-4	168	460	60	1745	225	17985	5000	74.53	0.800	0.750	0.660	0.880	0.890	0.880	4Rd	23.0	1x35P1)
	MI10-1070-4	184	460	60	1745	245	17985	5000	78.86	0.800	0.750	0.650	0.875	0.885	0.875	4Rd	23.0	1x50P 1) 2)
L	MI10-1200-4	210	460	60	1745	280	17985	5000	83.98	0.795	0.745	0.645	0.885	0.890	0.880	4Rd	23.0	1x50P 1) 2)
	VNI12-65-2	216	460	60	3510	260	26977	5000	67.48	0.870	0.845	0.790	0.885	0.875	0.845	2Rd	32.8	3/4x25ll 1)
	VNI12-75-2	250	460	60	3510	305	26977	5000	71.42	0.875	0.860	0.805		0.875		2Rd		3/4x35II1)
	VNI12-90-2	280	460	60	3520	340	26977	5000	77.32	0.870	0.850	0.790	0.885	0.875	0.840	2Rd	32.8	3/4x50II 1)
و َ	VNI12-65-4	146	460	60	1735	190	26977	5000	67.48	0.820	0.790	0.715		0.885			32.8	4x50 ¹⁾
12"6)	VNI12-75-4	175	460	60	1735	225	26977	5000	71.42	0.820	0.790	0.720	0.885	0.890	0.880	2Rd	32.8	3/4x25II 1)
_	VNI12-90-4	216	460	60	1730	275	26977	5000	77.32	0.825	0.795	0.730	0.885	0.890	0.880	2Rd	32.8	3/4x35II1)
	VNI12-100-4	239	460	60	1730	305	26977	5000	81.26	0.825	0.795	0.725		0.890		2Rd		3/4x35II 1)
	VNI12-110-4	268	460	60	1735	345	26977	5000	85.20	0.820	0.785	0.710	0.890	0.890	0.880	2Rd	32.8	3/4x50II ¹⁾
	VNI12-120-4	303	460	60	1730	390	26977	5000	89.13	0.825	0.795	0.720	0.880	0.885	0.880	2Rd		3/4x50II1)
	VNI14-50-2	250	460	60	3515	305	33721	9000	71.81	0.855	0.840	0.790	0.895	0.885	0.860	2Rd	32.8	3/4x35II1)
	VNI14-60-2	280	460	60	3530	350	33721	9000	75.75	0.845	0.820	0.755	0.895	0.885	0.855	2Rd	32.8	3/4x50II1)
6	VNI14-50-4	154	460	60	1740	205	33721	9000	71.81	0.805	0.770	0.690	0.885	0.885	0.865	1Rd	32.8	4x70
14"6)	VNI14-60-4	186	460	60	1740	240	33721	9000	75.75	0.815	0.780	0.705	0.885	0.885	0.865	1Rd	32.8	4x70 1)
-	VNI14-70-4	210	460	60	1740	275	33721	9000	79.09	0.810	0.780	0.705	0.885	0.885	0.870	2Rd	32.8	3/4x35II1)
	VNI14-80-4	239	460	60	1745	310	33721	9000	83.62	0.815	0.780	0.700		0.885				3/4x35II ¹⁾
	VNI14-90-4	268	460	60	1745	350	33721	9000	87.56	0.810	0.775	0.695		0.885				3/4x50II ¹⁾
	VNI14-100-4	291	460	60	1745	380	33721	9000	91.50	0.810	0.770	0.680		0.885				3/4x50II ¹⁾
(9,1,	MI16-65-4	280	460	60	1735	365	33721	9000	78.11	0.800	0.775	0.700	0.895	0.900	0.890	2Rd	32.8	3/4x50II ¹⁾
16																		

1) Cable must be submerged, 2) PE conductor outside the motor, 3) max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 4) +14/-6%, other voltages up to 1000V on request, 5) max. value for thrust bearing only, motor values see pages "motor measures & specifications", 6) higher power output on request

Pleuger Submersible Motor range for Medium Voltages SF 1.0

	Pov	tput Fr	ncy	Curre	nt		Length				Efficiency		у	Standard motor lead		tor leads		
	Model d.o.l.	HP ²⁾	Voltage V ³⁾ - 3Ph	Hz	Speed RPM	А	Thrust Cap Down(lbf) ⁴⁾		2		wer Fac 3/4	tor 1/2	1/1	3/4	1/2	No. of leads shape	Length ft	Cross section mm ²
	VNI14-60-4	115	2300	60	1755	33	33721	9000	75.75	0.775	0.720	0.615	0.855	0.845	0.815	3Rd	39.37	1x16
2300V	VNI14-70-4	173	2300	60	1740	47	33721	9000	79.09	0.800	0.755	0.665	0.865	0.865	0.845	3Rd	39.37	1x16
- 23(VNI14-80-4	230	2300	60	1730	61	33721	9000	83.62	0.815	0.780	0.710	0.870	0.875	0.860	3Rd	39.37	1x16
	VNI14-90-4	288	2300	60	1725	76	33721	9000	87.56	0.810	0.780	0.705	0.870	0.880	0.865	3Rd	39.37	1x16
Motors	VNI14-100-4	316	2300	60	1730	84	33721	9000	91.50	0.805	0.775	0.695	0.875	0.880	0.870	3Rd	39.37	1x16
14	VNI14-110-4	345	2300	60	1730	81	33721	9000	95.43	0.810	0.775	0.700	0.880	0.885	0.870	3Rd	39.37	1x16
	VNI14-120-4	403	2300	60	1725	106	33721	9000	99.37	0.805	0.775	0.700	0.880	0.885	0.875	3Rd	39.37	1x16
09	MI16-120-4	230	4160	60	1760	34	33721	9000	99.76	0.810	0.765	0.680	0.860	0.845	0.815	3Rd	39.37	1x16
- 41	MI16-130-4	288	4160	60	1760	42	33721	9000	103.70	0.810	0.765	0.680	0.870	0.860	0.830	3Rd	39.37	1x16
	MI16-145-4	403	4160	60	1760	60	33721	9000	109.61	0.785	0.730	0.630	0.880	0.875	0.845	3Rd	39.37	1x16
Motors	MI16-165-4	575	4160	60	1750	84	33721	9000	117.48	0.795	0.745	0.645	0.890	0.885	0.865	3Rd	39.37	1x16
16"	MI16-185-4	690	4160	60	1745	99	33721	9000	125.35	0.810	0.770	0.685	0.890	0.890	0.875	3Rd	39.37	1x16

¹⁾ Cable must be submerged, 2) max. water temperature: 30° C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 3) +10/-10%, other voltages up to 1000V on request 4) max. value for thrust bearing only, motor values see pages "motor measures & specifications"

Pleuger Submersible Motor range for Medium Voltages SF 1.15

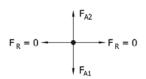
	Pov	ncy	Curre	nt		Length				Efficiency				Standard motor lead				
	Model d.o.l.	HP ²⁾	Voltage V ³⁾ - 3Ph		Speed RPM	Α	Thrust Cap			Pc 1/1	wer Fac 3/4	tor 1/2	1/1	3/4	1/2	No. of leads shape	Length C	ross section mm²
	VNI14-60-4	100	2300	60	1760	30	33721	9000	75.75	0.750	0.685	0.575	0.850	0.840	0.800	3Rd	39.37	1x16
2300V	VNI14-70-4	150	2300	60	1750	42	33721	9000	79.09	0.780	0.730	0.630	0.865	0.860	0.835	3Rd	39.37	1x16
- 23	VNI14-80-4	200	2300	60	1740	54	33721	9000	83,62	0.800	0.760	0.675	0.870	0.870	0.850	3Rd	39.37	1x16
ors	VNI14-90-4	250	2300	60	1740	67	33721	9000	87.56	0.800	0.760	0.670	0.875	0.875	0.860	3Rd	39.37	1x16
Motors	VNI14-100-4	275	2300	60	1740	74	33721	9000	91.50	0.795	0.750	0.665	0.880	0.880	0.860	3Rd	39.37	1x16
14	VNI14-110-4	300	2300	60	1740	80	33721	9000	95.43	0.795	0.755	0.665	0.885	0.880	0.865	3Rd	39.37	1x16
	VNI14-120-4	350	2300	60	1740	93	33721	9000	99.37	0.795	0.755	0.670	0.885	0.885	0.870	3Rd	39.37	1x16
09	MI16-120-4	200	4160	60	1765	31	33721	9000	99.76	0.790	0.735	0.645	0.855	0.835	0.800	3Rd	39.37	1x16
- 416	MI16-130-4	250	4160	60	1765	38	33721	9000	103.70	0.790	0.735	0.645	0.865	0.850	0.815	3Rd	39.37	1x16
	MI16-145-4	350	4160	60	1765	54	33721	9000	109.61	0.760	0.700	0.590	0.880	0.865	0.835	3Rd	39.37	1x16
Motors	MI16-165-4	500	4160	60	1760	76	33721	9000	117.48	0.770	0.710	0.605	0.890	0.880	0.855	3Rd	39.37	1x16
16"	MI16-185-4	600	4160	60	1755	88	33721	9000	125.35	0.795	0.745	0.645	0.890	0.885	0.865	3Rd	39.37	1x16

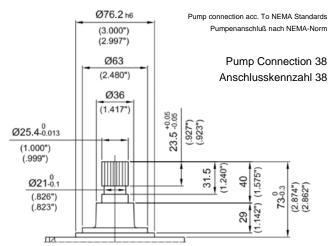
¹⁾ Cable must be submerged, 2) max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 3) +10/-10%, other voltages up to 1000V on request 4) max. value for thrust bearing only, motor values see pages "motor measures & specifications"

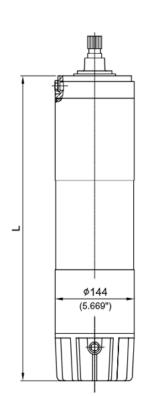
3626/0

09.18

M6 - 2 Pol.


Zeichnungs-Nr.: Drawing-No.:


ng No.: 893 5-3/4


Spline data: ANSI B92.1 15 teeth 30° pressure angle Daten der Verzahnung:

ANSI B92.1 15 Zähne 30° Eingriffswinkel

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type Motortyp	ı	L	Gev	eight vicht		nrust cap Max. A	xialkraft		Series No. Baustufe
Wotortyp	mm	inch	kg	lb	kN	lbf	kN	lbf	Ser
	1111111	IIICII	ĸy	ıD	KIN	IUI	KIN	וטו	
M6-160-2	554	21.81	38	84	12.5	2800	6	1350	
M6-200-2	594	23.39	42	93	12.5	2800	6	1350	
M6-240-2	634	24.96	46	102	12.5	2800	6	1350	
M6-270-2	664	26.14	49	109	12.5	2800	6	1350	3
M6-305-2	699	27.52	53	117	12.5	2800	6	1350	
M6-340-2	734	28.90	57	126	12.5	2800	6	1350	
M6-400-2	794	31.26	64	142	12.5	2800	6	1350	
M6-460-2	876	34.49	71	157	27.5	6100	6	1350	
M6-530-2	946	37.24	79	175	27.5	6100	6	1350	
M6-600-2	1016	40.00	87	192	27.5	6100	6	1350	4
M6-650-2	1066	41.97	93	206	27.5	6100	6	1350	
M6-720-2	1136	44.72	100	221	27.5	6100	6	1350	

- Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen
- F_{A1} Max. downthrust capacity Ma. Axialkraft in Richtung Motor
- F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

Cross Section	He	rausfü			Leads nzufül		leitun	gen				
Section	Single / Einfachleitung Double / Doppelleite											
Leitungs- querschnitt				Flat /	Flach							
		N	o. of co	res / A	nzahl c	ler Ade	rn					
mm²	3	3x	4	×	3	X	4	Х				
2,5	•	•	θ	•	θ	•	•	θ				
4	•	•	Θ	•	Θ	•	•	θ				
6 2)	•	•	•	θ	•	•	•	•				
10 2)	•	•		Θ	•	•		•				
16 2)	•	•										
Position of leads Lage d. Leitungsdurchführung	1	2	1	2	1	2	1	2				

For installation into 6"-well please check O.D. of pumping unit
 Bei Einbau in 6"-Brunnen, bitte den max. Aggregatdurchmesser beachten

	Standard cable / Standardleitung
•	Special cable / Sonderleitung

Max. cable dimensions										
Max. Leitungsabmessungen										
1 + 2										
Ø22										
Flat / Flach 17 x 36,5										

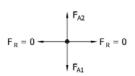
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

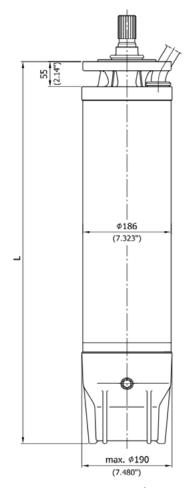
(2.008")

3630/0

09.18

M8 - 2 Pol.


Zeichnungs-Nr.: Drawing-No.:


894 5-4


Spline data: ANSI B92.1 23 teeth 30° pressure angle Daten der Verzahnung: ANSI B92.1

23 Zähne 30° Eingriffswinkel

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type	ı	L		eight vicht	Thrust capacity Axialkraft						
Motortyp				1)	F	A1	F	A2			
	mm	inch	kg	lb	kN	lbf	kN	lbf			
M8-330-2	1038	40.87	126	278	40	9000	12.5	2800			
M8-410-2	1118	44.02	139	307	40	9000	12.5	2800			
M8-480-2	1188	46.77	154	340	40	9000	12.5	2800			
M8-530-2	1238	48.74	163	360	40	9000	12.5	2800			
M8-580-2	1288	50.71	172	380	40	9000	12.5	2800			
M8-650-2	1358	53.46	185	408	40	9000	12.5	2800			
M8-710-2	1418	55.83	196	433	40	9000	12.5	2800			
M8-820-2	1528	60.16	216	477	40	9000	12.5	2800			
M8-930-2	1638	64.49	237	523	40	9000	12.5	2800			
M8-990-2	1698	66.85	247	545	40	9000	12.5	2800			

- Weight for standard construction (G) without power supply cable
 Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen
- F_{A1} Max. downthrust capacity (80 kN/17,985 lbf on request) Ma. Axialkraft in Richtung Motor (80 kN auf Anfrage)
- F_{A2} Max. upthrust capacity
 Max. Axialkraft in Richtung Pumpe

Cross Section		Motor Leads Herausführbare Stromzuführungsleitungen												
01033 00011011	:	Single	e / Eir	nfachl	eitung	J			Doubl	e / Do	ppell	leitun	g	
Leitungsquerschnitt		Round Rund		lat ach	1 Whip 1 Peitsche 2)			Roun Runc			at ach		2 Whip Peitsch 2)	
				N	o. of	core	s/A	nzah	ıl der	Ade	rn			
mm²	1x3	1x4	1x3	1x4	1x3	1x4	2x3	1x3 1x4	2x4	2x3	1x3 1x4	2x3	1x3 1x4	2x4
2,5	>	~	~	~	~	>	>	~	~	~	•	~	•	~
4	~	~	v	v	v	~	>	~	•	v	v	~	v	~
6	~	~	v	v	v	~	>	~	~	v	v	,	v	v
10	~	v	v	v	v	~	~	~	~	v	v	v	v	v
16	~	~	v	v	v	~	>	~	•	v	v	~	v	~
25	•	•	•		•	•	•	•						
Position of leads Lage d. Leitungsdurchführung	1	1	1	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

2) Three or four single core round cables, vulcanized (whip)

Mehrere 1-Adr. Rundleitungen mit gemeinsamer Vulkanisation im Bereich der Kabeldurchführung Special cable / Sonderleitung

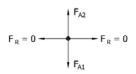
Max. cable dimensions / Max. Leitungsabmessungen												
Position	1	2	3									
Round / Rund	Ø42	Ø42	Ø21									
Flat / Flach	17 x 44 19 x 40	17 x 44 19 x 40	-									

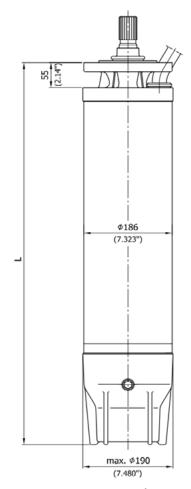
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

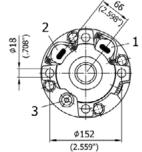
3631/0

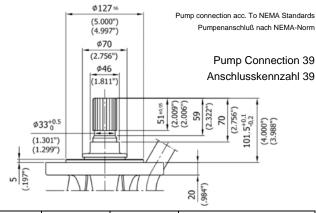
09.18

M8 - 4 Pol.


Zeichnungs-Nr.: Drawing-No.:


894 5-4


Spline data: ANSI B92.1 23 teeth 30° pressure angle Daten der Verzahnung: ANSI B92.1


> 23 Zähne 30° Eingriffswinkel

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type Motortyp	1	L	Gev	eight vicht	Thrust capacity Axialkraft F _{A1} F _{A2}					
	mm	inch	kg	lb	kN	lbf	kN	lbf		
M8-135-4	843	33.19	87	192	40	9000	12.5	2800		
M8-170-4	878	34.57	94	208	40	9000	12.5	2800		
M8-210-4	918	36.14	102	225	40	9000	12.5	2800		
M8-280-4	988	38.90	113	250	40	9000	12.5	2800		
M8-340-4	1048	41.26	127	280	40	9000	12.5	2800		
M8-420-4	1128	44.41	143	216	40	9000	12.5	2800		
M8-520-4	1228	48.35	165	364	40	9000	12.5	2800		
M8-700-4	1408	55.43	205	452	40	9000	12.5	2800		
M8-870-4	1578	62.13	245	541	40	9000	12.5	2800		
M8-1050-4	1758	69.21	275	607	40	9000	12.5	2800		

Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen

F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

Cross Section		Motor Leads Herausführbare Stromzuführungsleitungen												
Closs Section	- :	Single	e / Eir	nfachl	eitung)		[Doubl	e / Do	ppell	eitun	g	
Leitungsquerschnitt		und ınd		lat ach	1 Pei	1 Whip 1 Peitsche 2)		Round		Fla Fla	at ach		2 Whip Peitsch 2)	
				Ν	o. of	core	s/A	nzah	ıl der	Ade	rn	:		
mm²	1x3	1x4	1x3	1x4	1x3	1x4	2x3	1x3 1x4	2x4	2x3	1x3 1x4	2x3	1x3 1x4	2x4
2,5	>	~					`	~	~					
4	~	~	v	~			~	~	~	v	v			
6	~	v	~	v	v	~	~	~	~	v	~	v	v	v
10	~	~	v	v	v	~	~	~	~	v	v	v	v	v
16	~	~	~	~	v	~	~	•	~	v	v	v	~	v
25	•	•	•		•	•	•	•						
Position of leads Lage d. Leitungsdurchführung	1	1	1	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

²⁾ Three or four single core round cables, vulcanized (whip)

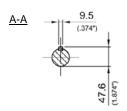
Mehrere 1-Adr. Rundleitungen mit gemeinsamer Vulkanisation im Bereich der Kabeldurchführung Special cable / Sonderleitung

Max. cable dimensions / Max. Leitungsabmessungen											
Position	1	2	3								
Round / Rund	Ø42	Ø42	Ø21								
Flat / Flach	17 x 44 19 x 40	17 x 44 19 x 40	-								

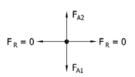
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

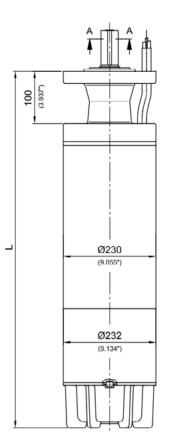
F_{A1} Max. downthrust capacity (80 kN/17,985 lbf on request) Ma. Axialkraft in Richtung Motor (80 kN auf Anfrage)

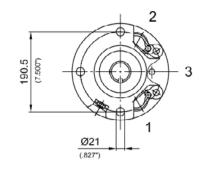
Unterwassermotor Submersible motor

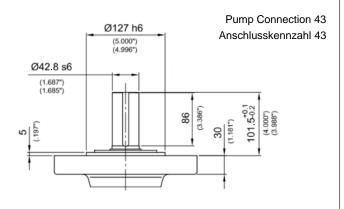

3628/0

09.18


MI10 – 2 Pol.


Zeichnungs-Nr.: Drawing-No.:


877 5-3



Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type				ight vicht	Thrust capacity Axialkraft						
Motortyp				1)	F	A1	F	A2			
	mm	inch	kg	lb	kN	lbf	kN	lbf			
MI10-420-2	1353	53.27	231	510	50	11250	22.5	5000			
MI10-490-2	1423	56.02	249	549	50	11250	22.5	5000			
MI10-600-2	1533	60.35	276	609	50	11250	22.5	5000			
MI10-740-2	1673	65.87	312	688	50	11250	22.5	5000			
MI10-880-2	1813	71.38	347	766	50	11250	22.5	5000			
MI10-960-2	1893	74.53	367	810	50	11250	22.5	5000			
MI10-1070-2	2003	78.86	395	871	50	11250	22.5	5000			
MI10-1200-2	2133	83.98	428	944	50	11250	22.5	5000			

- Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen
- F_{A1} Max. downthrust capacity (80 kN/17,985 lbf on request) Ma. Axialkraft in Richtung Motor (80 kN auf Anfrage)
- F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

Cross Section		H	lera	usfü	hrba		otor Stron			ungs	leitu	ınge	n	
Ordes Codien	Single / Einfachleitung							[Doubl	e / Do	oppell	eitun	g	
Leitungsquerschnitt		Round Flat 1 Whip 1 Peitsche Rund Flat Flach 2) Round Flat Flach										2 Whips 2 Peitschen 2)		
		No. of cores						nzah	ıl der	Ade	rn			
mm²	1x3	1x4	1x3	1x4	1x3	1x4	2x3	1x3 1x4	2x4	2x3	1x3 1x4	2x3	1x3 1x4	2x4
2,5	`	~	~				>	~	~	~	~			
4	~	•	~	v	v	v	~	V	•	•	•	•	v	~
6	~	•	~	v	v	v	>	v	~	~	~	~	v	~
10	~	•	~	•	•	•	>	~	~	~	~	~	v	~
16	~	•	~	•	•	•	>	•	•	•	•	•	v	~
25	~	•	~		v	v	>	v	~	~		~	v	~
35	~	•			•	•	V	•	~			~	v	~
50	~				•	•	~					~	•	
Position of leads Lage d. Leitungsdurchführung	1	1	1	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

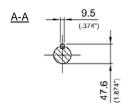
2) Three or four single core round cables, vulcanized (whip)

Mehrere 1-Adr. Rundleitungen mit gemeinsamer Vulkanisation im Bereich der Kabeldurchführung

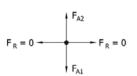
Special cable / Sonderleitung

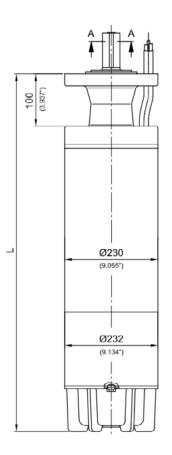
Max. cab	Max. cable dimensions / Max. Leitungsabmessungen											
Position	1	2	3									
Round / Rund	Ø42	Ø42	Ø15									
Flat / Flach	17 x 44 19 x 40	17 x 44 19 x 40	-									

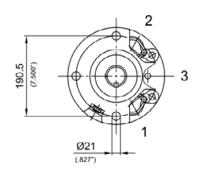
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

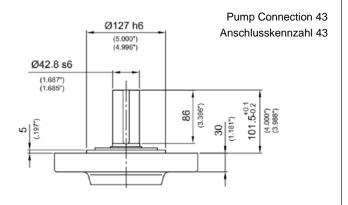

3629/0

09.18


MI10 – 4 Pol.


Zeichnungs-Nr.: Drawing-No.:


877 5-3



Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type	ı	L		eight vicht	Thrust capacity Axialkraft						
Motortyp				1)	F	A1	F	A2			
	mm	inch	kg	lb	kN	lbf	kN	lbf			
MI10-420-4	1353	53.27	231	510	50	11250	22.5	5000			
MI10-490-4	1423	56.02	249	549	50	11250	22.5	5000			
MI10-600-4	1533	60.35	276	<mark>609</mark>	50	11250	<mark>22.5</mark>	5000			
MI10-740-4	1673	65.87	312	688	50	11250	22.5	5000			
MI10-880-4	1813	71.38	347	766	50	11250	22.5	5000			
MI10-960-4	1893	74.53	367	810	50	11250	22.5	5000			
MI10-1070-4	2003	78.86	395	871	50	11250	22.5	5000			
MI10-1200-4	2133	83.98	428	944	50	11250	22.5	5000			

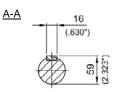
- Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen
 Max. downthrust capacity (80 kN/17,985 lbf on request)
 Ma. Axialkraft in Richtung Motor (80 kN auf Anfrage)
- F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

Cross Section		Motor Leads Herausführbare Stromzuführungsleitungen												
Oross Occilori		Single / Einfachleitung Double / Doppelleitung										g		
Leitungsquerschnitt		und ind		lat ach	1 W 1 Pei 2	tsche		Round		Fla Fla	at ach	2 Whips 2 Peitscher 2)		
				No	o. of	core	s/A	nzah	l der	Ade	rn			
mm²	1x3	1x4	1x3	1x4	1x3	1x4	2x3	1x3 1x4	2x4	2x3	1x3 1x4	2x3	1x3 1x4	2x4
2,5	>	,	~	~			>	~	~	~	~			
4	~	~	~	v	~	~	~	v	~	~	v	v	v	`
6	~	~	•	•	~	~	~	~	v	v	•	v	v	,
10	~	~	,	v	•	•	~	v	v	v	v	v	v	`
16	~	~	•	•	•	•	~	•	v	v	•	•	v	•
25	~	~	v		~	~	~	v	v	v		v	v	`
35	~	~			•	•	~	v	v			v	v	•
50	~				•	•	~					•	•	
Position of leads Lage d. Leitungsdurchführung	1	1	1	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

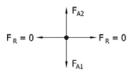
- 2) Three or four single core round cables, vulcanized (whip)
- Mehrere 1-Adr. Rundleitungen mit gemeinsamer Vulkanisation im Bereich der Kabeldurchführung Special cable / Sonderleitung

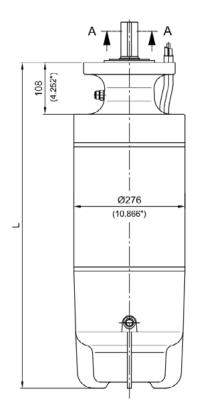
Max. cable dimensions / Max. Leitungsabmessungen								
Position	1	2	3					
Round / Rund	Ø42	Ø42	Ø15					
Flat / Flach	17 x 44 19 x 40	17 x 44 19 x 40	-					

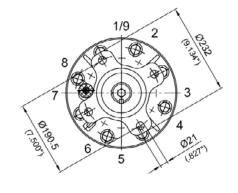
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

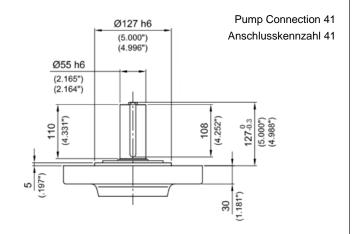

3509/0

09.18


VNI12 – 2 Pol.


Zeichnungs-Nr.: Drawing-No.:


878 5-2



Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type Motortyp	ı	L	Gev	eight wicht	F	Thrust of Axial	kraft	A2
Wotortyp	mm	inch	kg	lb	kN	lbf	kN	lbf
VNI12-65-2	1714	67.48	475	1048	60	13500	22.5	5000
VNI12-75-2	1814	71.42	525	1158	60	13500	22.5	5000
VNI12-90-2	1964	77.32	600	1323	60	13500	22.5	5000
VNI12-100-2	2064	81.26	650	1434	60	13500	22.5	5000
VNI12-110-2	2164	85.20	700	1544	60	13500	22.5	5000
VNI12-120-2	2264	89.13	750	1654	60	13500	22.5	5000

Weight for standard construction (G) without power supply cable
 Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen

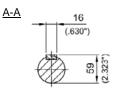
F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

		Motor Leads Herausführbare Stromzuführungsleitungen										
Cross Section		gle nleitung	Do	Double ppelleitu	ıng	Single-Core-Cable Einzeladerleitung						
Leitungs- querschnitt			d 7 Multi d / Mehr					Round Rund				
			o. of cor ahl der A					o. of lea I der Lei				
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8		
16	~	•	•	•	•	~	~	•	~	•		
25	~	~	•	•	•	~	•	•	•	•		
35	v	~	~	•	v	~	~	•	v	•		
50	~	~	•	v	v	~	v	v	v	,		
70	~			v		~	•	•	v	,		
95				•		~	•	,	•			
Position of leads Lage der Leitungsdurchführung	1/9	1/9	1,5 / 9,10	1,5 / 9,10	1,5 / 9,10	1,2,4	14	16	16, 8	18		

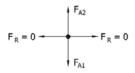
Max. cable dimensions / Max. Leitungsabmessungen										
Position	1	2	3	4	5	6	7	8	9	10
Round / Rund	ø40	ø26	ø40	ø26	ø26	ø26	ø26	ø26	ø45	ø45

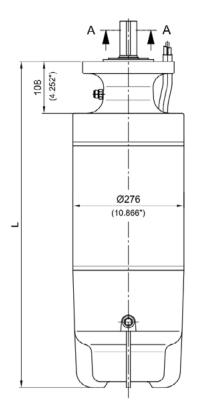
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

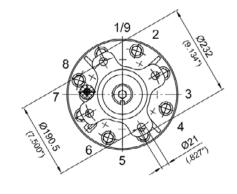
F_{A1} Max. downthrust capacity (120 kN/26,977 lbf on request) Ma. Axialkraft in Richtung Motor (120 kN auf Anfrage)

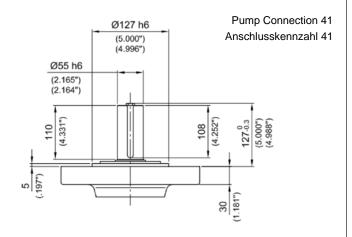

3510/0

09.18


VNI12 – 4 Pol.


Zeichnungs-Nr.: Drawing-No.:


878 5-2



Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

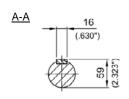
Motor type		Weight L Gewicht				Thrust capacity Axialkraft					
Motortyp				1)	F	A1	F	F_{A2}			
	mm	inch	kg	lb	kN	lbf	kN	lbf			
VNI12-65-4	1714	67.48	475	1048	60	13500	22.5	5000			
VNI12-75-4	1814	71.42	525	1158	60	13500	22.5	5000			
VNI12-90-4	1964	77.32	600	1323	60	13500	22.5	5000			
VNI12-100-4	2064	81.26	650	1434	60	13500	22.5	5000			
VNI12-110-4	2164	85.20	700	1544	60	13500	22.5	5000			
VNI12-120-4	2264	89.13	750	1654	60	13500	22.5	5000			

- Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen
- F_{A1} Max. downthrust capacity (120 kN/26,977 lbf on request) Ma. Axialkraft in Richtung Motor (120 kN auf Anfrage)
- F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

		Motor Leads Herausführbare Stromzuführungsleitungen									
Cross Section		igle nleitung	Do	Double ppelleitu	ng	Single-Core-Cable Einzeladerleitung					
Leitungs- querschnitt			d 7 Multi d / Mehra								
			o. of core ahl der A				o. of lea I der Lei				
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8	
16	~	•	~	~	~	~	~	~	~	~	
25	~	~	•	~	~	~	~	~	-	~	
35	~	~	v	v	~	~	~	~	~	~	
50	~	~	,	v	~	~	~	~	~	~	
70	~			v		~	•	~	~	~	
95						~	~				
Position of leads Lage der Leitungsdurchführung	1/9	1/9	1 ,5 / 9 ,10	1 ,5 / 9 ,10	1 ,5 / 9 ,10	1,2,4	14	16	16, 8	18	

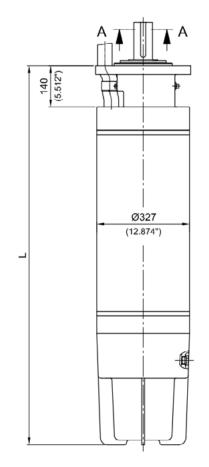
Max. cable dimensions / Max. Leitungsabmessungen										
Position	1	2	3	4	5	6	7	8	9	10
Round / Rund	ø40	ø26	ø40	ø26	ø26	ø26	ø26	ø26	ø45	ø45

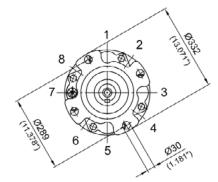
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

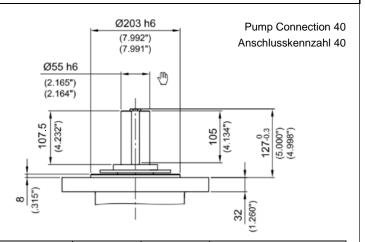

3607/0

09.18

VNI14 – 2 Pol.


Zeichnungs-Nr.: Drawing-No.:


879 5-3



Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type		L	We Gev	capacity Ikraft				
Motortyp			1)		F	A1	F _{A2}	
	mm	inch	kg	lb	kN	lbf	kN	lbf
VNI14-50-2	1824	71.81	590	1301	75	17000	40	9000
VNI14-60-2	1924	75.75	650	1334	75	17000	40	9000
VNI14-70-2	2024	79.09	710	1566	75	17000	40	9000
VNI14-80-2	2124	83.62	770	1698	75	17000	40	9000
VNI14-90-2	2224	87.56	830	1830	75	17000	40	9000
VNI14-100-2	2324	91.50	890	1963	75	17000	40	9000
VNI14-110-2	2424	95.43	950	2095	75	17000	40	9000
VNI14-120-2	2524	99.37	1010	2227	75	17000	40	9000

Weight for standard construction (G) without power supply cable
 Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen

F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

		Motor Leads Herausführbare Stromzuführungsleitungen									
Cross Section		ngle nleitung	Do	Double ppelleitu	ıng	Single-Core-Cable Einzeladerleitung					
Leitungs- querschnitt			d 7 Multi d / Mehra					Round Rund			
			o. of core ahl der A					o. of lea I der Lei			
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8	
16	~	•	~	•	•	~	~	~	•	~	
25	~	•	•	•	•	~	~	•	•	•	
35	~	~	~	•	•	~	~	•	~	•	
50	~	~	~	•	•	~	~	•	,	~	
70	~	~	~	•	•	~	~	•	~	•	
95						~	~	~	v	~	
120						~	~	•	-	~	
Position of leads Lage der Leitungsdurchführung	1	1	1 ,5	1 ,5	1 ,5	1,3,5	1, 3 5, 7	24 68	28	18	

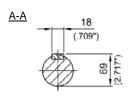
Max. cable dimensions / Max. Leitungsabmessungen									
Position	1	2	3	4	5	6	7	8	
Round / Rund	ø51	ø26	ø45	ø26	ø51	ø26	ø45	ø26	

PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

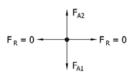
F_{A1} Max. downthrust capacity (150 kN/33,721 lbf on request) Ma. Axialkraft in Richtung Motor (150 kN auf Anfrage)

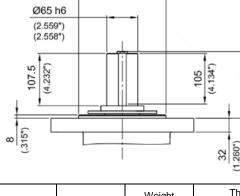
3608/0

09.18


VNI14 – 4 Pol.

Zeichnungs-Nr.: Drawing-No.:


879 5-3


Pump Connection 42

Anschlusskennzahl 42

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Ø203 h6

(7.992")

(7.991")

A Motor type Motortyp
VNI14-50-4
VNI14-60-4
VNI14-70-4
VNI14-80-4
VNI14-90-4
VNI14-100-4
VNI14-110-4
VNI14-120-4
1) Weight for standa Gewicht für Stand F _{A1} Max. downthrust c Ma. Axialkraft in R F _{A2} Max. upthrust cap Max. Axialkraft in

Motor type	L			ight vicht	Thrust capacity Axialkraft				
Motortyp				1)	F	A1	F	A2	
	mm	inch	kg	lb	kN	lbf	kN	lbf	
VNI14-50-4	1824	71.81	590	1301	75	17000	40	9000	
VNI14-60-4	1924	75.75	650	1334	75	17000	40	9000	
VNI14-70-4	2024	79.09	710	1566	75	17000	40	9000	
VNI14-80-4	2124	83.62	770	1698	75	17000	40	9000	
VNI14-90-4	2224	87.56	830	1830	75	17000	40	9000	
VNI14-100-4	2324	91.50	890	1963	75	17000	40	9000	
VNI14-110-4	2424	95.43	950	2095	75	17000	40	9000	
VNI14-120-4	2524	99.37	1010	2227	75	17000	40	9000	

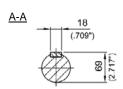
- lard construction (G) without power supply cable adardausführung (G) ohne Stromzuführungsleitungen
- capacity (150 kN/33,721 lbf on request) Richtung Motor (150 kN auf Anfrage)
- apacity n Richtung Pumpe

		Motor Leads Herausführbare Stromzuführungsleitungen								
Cross Section		ngle nleitung	Do	Double ppelleitu	ing	Single-Core-Cable Einzeladerleitung				
Leitungs- querschnitt		Round 7 Multi-Core Rund / Mehradrig						Round Rund		
		No. of cores Anzahl der Adern				No. of leads Anzahl der Leitungen				
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8
16	~	•	•	•	~	~	~	•	•	~
25	~	•	~	•	•	~	~	~	•	~
35	~	~	v	•	v	~	~	~	~	~
50	~	•	~	•	•	~	~	~	•	~
70	~	~	~	~	~	~	~	~	~	~
95						~	~	~	~	~
120						~	~	~	,	~
Position of leads Lage der Leitungsdurchführung	1	1	1, 5	1, 5	1, 5	1,3,5	1, 3 5, 7	24 68	28	18

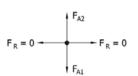
1
8 2 2 4
7-63 3
6 5 4
8 6 5 039 (r.1817)

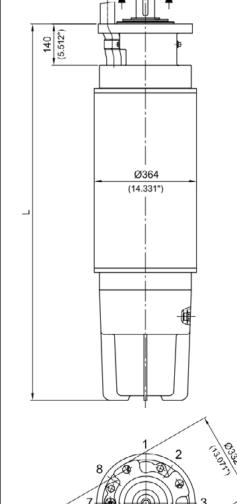
Max. cable dimensions / Max. Leitungsabmessungen										
Position	1	2	3	4	5	6	7	8		
Round / Rund	ø51	ø26	ø45	ø26	ø51	ø26	ø45	ø26		

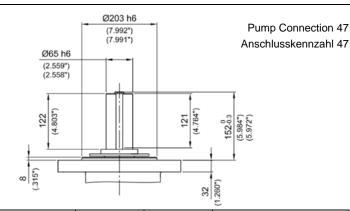
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg


3613/0

09.18


MI16 – 4 Pol.


Zeichnungs-Nr.: Drawing-No.:


No: 881 5-2

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type Motortyp	L		Weight Gewicht		Thrust capacity Axialkraft F _{A1} F _{A2}				
	mm	inch	kg	lb	kN	lbf	kN	lbf	
MI16-65-4	1984	78.11	860	1896	75	17000	40	9000	
MI16-75-4	2084	82.05	925	2040	75	17000	40	9000	
MI16-85-4	2184	85.98	990	2183	75	17000	40	9000	
MI16-95-4	2284	89.92	1055	2326	75	17000	40	9000	
MI16-110-4	2434	95.83	1150	2536	75	17000	40	9000	
MI16-120-4	2534	99.76	1215	2679	75	17000	40	9000	
MI16-130-4	2634	103.7	1280	2822	75	17000	40	9000	
MI16-145-4	2784	109.61	1375	3032	75	17000	40	9000	
MI16-165-4	2984	117.48	1505	3318	75	17000	40	9000	
MI16-185-4	3184	125.35	1635	3605	75	17000	40	9000	

- Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen
- F_{A1} Max. downthrust capacity (150 kN/33,721 lbf on request) Ma. Axialkraft in Richtung Motor (150 kN auf Anfrage)
- F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

		Motor Leads Herausführbare Stromzuführungsleitungen									
Cross Section		Single Double nfachleitung Doppelleitung				Single-Core-Cable Einzeladerleitung					
Leitungs- querschnitt		Round 7 Multi-Core Rund / Mehradrig					Round Rund				
		No. of cores Anzahl der Adern				No. of leads Anzahl der Leitungen					
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8	
16	~	~	~	~	~	~	~	~	~	~	
25	~	•	•	•	•	~	~	•	~	•	
35	~	v	v	v	v	~	~	v	v	~	
50	~	•	•	•	•	~	~	•	v	~	
70	~	•	•	•	•	~	~	•	~	~	
95						~	~	~	v	~	
120						~	~	~	v	~	
150							•				
Position of leads Lage der Leitungsdurchführung	1	1	1, 5	1, 5	1, 5	1,3,5	1, 3 5, 7	24 68	28	18	

Special cable / Sonderleitung

Max. cable dimensions / Max. Leitungsabmessungen										
Position	1	2	3	4	5	6	7	8		
Round / Rund	ø51	ø26	ø45	ø26	ø51	ø26	ø45	ø26		
	l .									

PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

PLEUGER Technologies/

PLEUGER Motor Sensors

PLEUGER pump sensors provide the operator real-time monitoring and data for key areas of pump performance

TEMPERATURE SENSORS Plug-in 3 wire sensor Pt100 Sub Temp

Detects temperature for real-time feedback with 3x1.5 mm³ EPR cable

- The purpose of the measurement is to protect the motor
- Measures the temperature of the motor fill. The measurement is based on the change in resistance which is proportional to the change in temperature
- Plug-in sensor intended to be installed in PLEUGER submersible motor with an applicable interface (seal)

- Simple plug-in installation
- Compact, single piece design
- Retrofittable
- Flexible, water resistant cable

VIBRATION SENSORS

Vibration Sensor PI-100 Sub Accelerometer (one axes)

PI-300 Sub Accelerometer (three axes X,Y,Z)

- Sub Accelerometer detects the incorrect operating conditions of rotating components (e.g. impeller)
- Side entry for easy access
- Waterproof
- Resistant to oil

CONDUCTIVITY SENSORS Motor fill monitoring sensor PI-100 Sub Con

- Detects an incorrect or contaminated fill of the PLEUGER motor
- System consists of the sensor, a cable and the monitoring controller.
 The sensor measures the conductivity of the motor fill and its temperature.
- Plug-in sensor intended to be installed in PLEUGER motor with an applicable interface (adapter and seal).

FEATURES

- Plug-in installation
- Waterproof
- Dual function
- For PLEUGER Motors M8 to MI40
- Alternative Solution for Header Tank

PLEUGER. Reliable. Always.

PLEUGER Motors for Special Applications

Hot water motor

Designed for hot water applications such as District heating and Geothermal energy

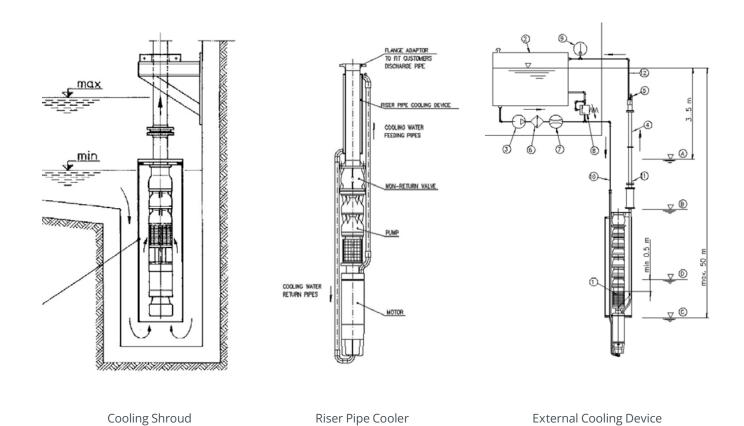
- District heating and Geothermal
- All-weather greenhouse energy
- Cooling water and process pumps
- Thermal spas

Features

- 270 kW (362 HP) up to 85°C (185°F) water temperature
- Motor sizes 6" to 12"
- Starting method DOL, Star-Delta (on request)
- Different cooling solutions available

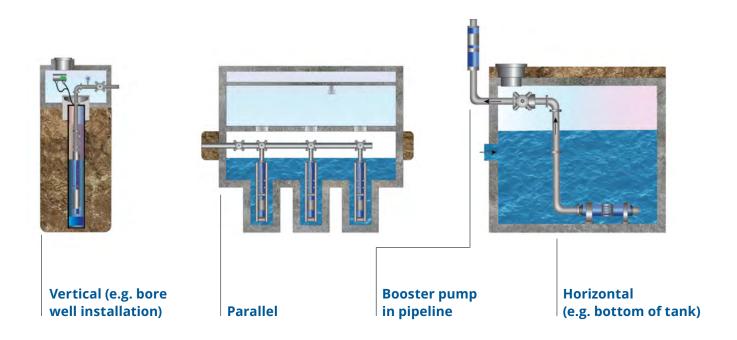
Examples of PLEUGER Submersible Motors for customized applications

- MI10-600-4 , 10", 600 mm stator length, 4-pole design
- MIP16-130-6 Polder construction, 1300 mm
- stator length
- PMM6-320-4 Permanent Magnet Motor, 320 mm stator length (6" and 8" PMM)
- MIT19-130-2 Tandem configuration two identical MI19-130-2 working together
- VNI22-200-4
- MOE8-410-2 Oil-filled motor
- MHA8-410-2 Filling liquid temperature ϑ > 90 °C or 194 °F
- MK6-460-2 Oil (petroleum) cavern installation

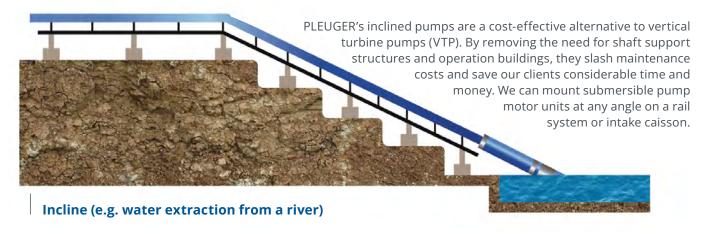


PLEUGER Technologies/

External Cooling Systems


Customized Cooling Systems for individual cooling requirements

- Simple plug-in installation
- Compact, single piece design
- Retrofittable
- Flexible, water resistant cable



Pump installation options

With various installation options, PLEUGER's pump units are the ideal solution for almost any application in the water industry.

Inclined pumps for processing and cooling water applications

WORLDWIDE SALES, SERVICE AND SUPPORT

THE RELIABILITY EXPERTS

PLEUGER designs, manufactures and services submersible motors, pumps, thrusters and plunger pumps. Renowned worldwide for absolute reliability and outstanding longevity throughout the energy, mining, water, industrial processing and oil & gas industries.

Our products perform in some of the most challenging and harshest of environments. PLEUGER engineers find solutions to some of the toughest challenges and are trusted across the globe as the reliability experts.

HEADQUARTERS: PLEUGER Industries GmbH

Friedrich-Ebert-Damm 105, 22047 Hamburg, Germany Tel: +49 (0) 40 69 689 0 hamburg@pleugerindustries.com

GENERAL ENQUIRIES

Tel. +49 (0) 40 69 689 770

SPARE PARTS

Tel. 49 (0) 40 69 689 200 spareparts@pleugerindustries.com

PLEUGER INDUSTRIES FRANCE

21, Rue de la Mouchetière Parc d'activités d'Ingré, F – 45140 Saint-Jean de la Ruelle France

Tel: +33 (0) 2 38 70 84 00 orleans@pleugerindustries.com

PLEUGER INDUSTRIES USA

1450 Brickell Ave Suite 1900 Miami, Florida 33131 United States of America

Tel: +1 786 280 3471 miami@pleugerindustries.com

PLEUGER INDUSTRIES SINGAPORE

84 Toh Guan Road East, Singapore Water Exchange Singapore 608501

Tel: +65 8822 2413 singapore@pleugerindustries.com

ATTACHMENT #3

MW-PW2 AQUIFER TESTING FIELD DATA SHEETS

STEP-DRAWDOWN TEST - PRODUCTION WELL # MJ-PW2 FIELD DATA FORM

	1	
Test date:	4-1	-75
i est date.		~ _

Well Information				
Date drilled:	Borehole dian	neter: (inche	s) Borehole depth:	ft BLS
Casing ID diameter:(inches)		al & thickness:	Casing length:	ft BLS
	Screen materi	al & slot size:	Screen length:	ft BLS
Screen Type:	Screen fittings	S:	Total well depth:	ft BLS
Pump Information				
Pump type:	Pump diamete	or:	Pump stages:	
Pump column -type/diameter:		Check valve-type/material:	_	
Pump intake level:ft BLS	}			
Motor type:	Motor horsep	ower:	Motor length:	
Motor voltage:	Phase:	Service factor:	Full-load amps:	
Step-Test Setup				
Water discharged to:		Discharge distance fro	m PW:	(feet)
Orifice size: 10 x 7				(inches)
Static water level from top of acces	ss port: 18	00 (feet) Date/tip	ne: 4/1/25	@ 2958
Contractor performing test: $\mathcal{V}\omega$	5 2 98	TRITAIN	110/00	-0 120
Measurements made by:				

STEP #1		1. THE 2. H. S. C.			***********	
Notes	Time (hr:min)	Elapse Time (minutes)	Depth to Water (feet)	Line Pressure (psi)	Orifice Reading (inches)	Pumping Rate (gpm)
Static Water Level	0958	-5	18.00			(SI)
Pump On - Shut In HD	1000	0	20.90		"	
Valve Open	1001	1	20 31		13.5	253
	1002	2	19.91			
	1003	3	20.12			
	1004	4	20.12			
Step #1 Motor	1005	5	20.09			
Amp Readings	1011	10	20.23			
$L_1 =$	1015	15	20.24			
$L_2 =$	1020	20	20.33			
$L_3 =$	1025	25	20,28			
	1030	30	20,27		13.5	753
	1046	40	20.37			, , ,
	1050	50	20.35			
	1100	60	20.35			
	1120	80	20.39			
	1140	100	20.47			
	12:00	120	20,40			

Page 1 of 3

STEP #2					Test date:_	1/1/05
D 1 11 11 11 11 11 11 11 11 11 11 11 11		Elapse	Depth to	Line	Orifice	Pumping
Notes	Time	Time	Water	Pressure	Reading	Rate
110000	(hr:min)	(minutes)	(feet)	(psi)	(inches)	(gpm)
Change Pump Rate	12:00	0		(ps1)	31	
8 - 1 - 1	12:01	1	20.46		31	1/33
	12:02	2	2/ 88			
	12:05	3	2147			
	12:04	4.	21.90		3/	1/33
Step #2 Motor	12:05	5	21 90			
Amp Readings	12:10	10	21.94			
$L_1 =$	12:15	15	21.94			
$L_2 =$	12:00	20	21.95		*1	
$L_3 =$	12:25	25	21.98		3/	1/33
	12:30	30	21.97			
	12:40	40	21.99			
	12:50	50	22.01			
	13:00	2 60	22,03			
	13:20	80	22.10			
	13:40	100	22113			
(15) (10)	14:00	120	22,16			-
STEP #3						
Change Pump Rate	14:00		22.16		49	1435
	14:01	1	7777			
	14:00		23.33		460	7.7.2
	14:03	4.	23.35		48	1435
Step # 3 Motor	14.04	5	23.35			
Amp Readings	14:05	10	72 25	,		
$L_1 =$	1415	15	23.37 23.34 23.40 23.43			•
$L_2 =$	14:20	20	23 40	1		
$L_3 =$			23 43			
	14:25	30	72 44			
	14:40	40	23.4			
	14:50	50	23.44			
	15:00	-	23,51			
	15:20	08	23.53			
	15:40	100			UP	1435
	16:00	120	23.57		1	

STEP #4					1 cst date	
51EF #4		D1	D 1	* *	0.10	ъ.
		Elapse	Depth to	Line	Orifice	Pumping
Notes	Time	Time	Water	Pressure	Reading	Rate
	(hr:min)	(minutes)	(feet)	(psi)	(inches)	(gpm)
Change Pump Rate	16:00	0	23-63		65	1660
	16:01	1	24.60			
	16:02	2	24.63			
	16:03	3	24.62			
	16:04	4.	24.63			
Step #4 Motor	16:05	5	24.63			
Amp Readings	16:10	10	24.68			
$L_1 =$	16:15	15	24.70		65	1660
$L_2 =$	16:20	20	24.69			
$L_3 =$	16:25	25	24,71			
	16:30	30	24 72			
	16.40	10	20175			
	16:50		2425			
	17:00		2479			
	17:20		2441		65	1660
	12:40		24 41		9	1000
	18:00	120	24.93			
Recovery		Marian A continue				
Pump Off	18:00	0	24.93			
1 tillp OII	0.	1	18 22			
	18,01	2	18.00			
	18:03	3	19.05			
	12:04	4	19.04			-
	100.07	5	19.01			
	18:00	6	18 00			
	11:00	7	19 00			
	A.O.	8	19 (20)			
	6.08	9	18,00			
	10:00	10	19,00			
	18.10	20	18.66			
		30				
		40				
		50				
		60				
Commonte & Additio	mal Matage	00				

Comments & Additional Notes:

STEP-DRAWDOWN-TEST-PRODUCTION WELL # MJ-PWS (TWS)
Constant Laste FIELD DATA FORM
Test date: 4-1-25

	1	
	Ų	

nches) Borehole depth:ft BLS
Casing length: ft BLS
Screen length: ft BLS
Total well depth: ft BLS
Pump stages:
al:
Motor length:
Full-load amps:
from PW:(feet)
meter: 7 (inches) re/time: 0 f f (
re/time: 0/46
;

STEP #1						
		Elapse	Depth to	Line	Orifice	Pumping
Notes	Time	Time	Water	Pressure	Reading	Rate
	(hr:min)	(minutes)	(feet)	(psi)	(inches)	(gpm)
Static Water Level	1846	-5	18.41			
Pump On - Shut In HD	0700	0	23,25	[
Valve Open	0901	1	23.8/			
b)	0802	2	24,04	}		
	09.03	3	24:17			
	0904	4	24.17			
Step #1 Motor	0905	5	24.19			
Amp Readings	0910	10	24,21			
$L_1 =$	0915	15	24,26			
$L_2 =$	0920	20	24.29		(e5	1660
$L_3 =$	0925	25	24,31			
	0930	30	24,36	,		
	0940	40	24.40)		
	0950	50	24.4			
	1000	60	24.48			
	1020	80	24.58		65	1660
	1040	100	24.56			
	1100	120	24.63			

Well ID MJ-PW2 Date 4/2/25 Page No. 2

Date	Date Clock Time Pumping Started (Use Military Time) (In Minutes)		Depth to Water · (S)	Change in Water Level (S - S ₀)	Discharge Rate (GPM)	Comments (Include Weather Conditions)			
4-2-	5 1200		24.81						
	100 cm		24.95						
	200					Missed Reading			
	300	Ø				Missed Reading Tenring down Ry			
	400		25.43						
	500		25.61						
	600		25:75						
	7:00		251.75						
	8500		24:75						
	9:00		25.78			Checked at online			
	101,00		25,92-			Checked at orfice 65" Post Puel in Jener			
	11100		26.03			womm whily			
11/2	12		26.18						
712	1		26.24	\					
	2		26.35			Checkel abonfing			
	7		26,43			Small increase Backers to &			
	4		26,48		•				
	5		26.57						
	12		2666						
	7:	7.4.	26.71						
	Œ		26,76	W.					
	9:00		26.80	3.33		Pump Off			
	9101		21.14						
	9:02		21 03						
	9:03		21.00						
	9:04		20 98						
	9:05		20 96						
	9:06		20.96 20.95 20.95		,				
	9:07		20 95	•	7.				
	9:08		20 97						
	1.00		1	i i					
	9.10		20.92						
	9:11		20.90						
	9:12		20.91	-					
	01/12		20.00						
	9:14		1000						
ļ	10:16		20.88	<u> </u>					

ATTACHMENT #4 GROUNDWATER LAB RESULTS

7940 Memorial Drive Plain City, Ohio 43064 (614) 873-4654

Date: April 07, 2025

National Water Services LLC (1384)

Attn: Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

RE: Certificate of Analysis for Project - Private Drinking Water

The following report contains analytical results for samples submitted on the chain of custody dated April 03, 2025.

I have reviewed the validity of the analytical data generated. All data is reported in accordance to our laboratory QA/QC plan. Any exceptions are noted in the Case Narrative or with qualifiers in the report.

If you have any questions or need additional documentation, please contact our Office.

Sincerely,

Cheryl Rex

MASI Laboratories

QA/QC Officer

cheryl@masilabs.com

Cheryl Rex

(614) 873-4654

CERTIFICATE of ANALYSIS

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

PO Number:

PWSID: Facility ID:

Total Chlorine (mg/L):

Free Chlorine (mg/L):

Combined Chlorine (mg/L):

Repeat Sample #:

Client #: 1384

Date Received: 4/3/25 15:29

Ohio EPA Analyzed Date: 4/7/25 08:51

Sample Name: Josh Gavin
Sample Date/Time: 4/3/25 08:30
Sample Monitoring Point:

Sample Type:

Sample Tap/Address: Spigot Warrne County Middletown Junction Well Field TW-2

Sample ID: 285707-01

Lab Sample # : 5D00751-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Microbiology									
Total Coliform	Absence	/ 100 ml		N/A	N/A	04/03/25 16:23	04/04/25 10:32	JAC	SM 9223 B

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

Sampler Name: Josh Gavin Sample Date/Time: 4/3/25 09:00

Sample Monitoring Point: Sample Type:

Sample Tap/Address: Spigot Warrne County Middletown Junction Well Field TW-2

Client #: 1384 PO Number:

Date Received: 4/3/25 15:29

Ohio EPA Analyzed Date: 4/7/25 08:51

PWSID: Facility ID:
Repeat Sample #:
Total Chlorine (mg/L):
Free Chlorine (mg/L):
Combined Chlorine (mg/L):

Sample ID: 285707-02

Lab Sample # : 5D00751-02 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Microbiology									
Total Coliform	Absence	/ 100 ml		N/A	N/A	04/03/25 16:23	04/04/25 10:32	JAC	SM 9223 B

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130 Client #: 1384 PO Number:

Date Received: 4/3/25 15:29

Ohio EPA Analyzed Date: 4/7/25 08:51

Notes and Definitions

Item	Definition
mg/kg Dry	Sample results reported on a dry weight basis
ug/L	ppb/Part per Billion
mg/L	ppm/Part per Million
ng/L	ppt/Part per Trillion
ND	Analyte NOT DETECTED at or above the method detection limit (MDL)
!	Analyte is at or above the Maximum Contaminate Level
MDL	Method Detection Limit
CFU	Colony Forming Units
MPN	Most Probable Number
NTU	Nephelometric Turbidity Unit
pCi/L	Picocuries per liter
SVI	Sludge Volume Index
%	Percent
GPD	Gallons per Day
su	Standard Units

Notes:

- 1. Calculated analytes are based on raw data and may not reflect the rounding of the individual compounds.
- 2. Samples are analyzed using the information received on the request sheet and may not be analyzed when the parameters fall outside required guidelines.

LABORATORIES 7940 Memorial Drive Plain City, OH 43064

614-873-4654

New

5D00747-01/2/3st Sheet

Received: 4/3/2025

on Bottle:

285707

REVISED 2-15-23 DN

COOLER:

Analysis R **Potable** Matrix:

** See reverse for important SDS innormation *:

Client #: 1384	Client Name: National Water Services	County:	P.O.# <u>082652</u>
		Sample Type	
Sample Tap:	Date Collected: 34/63/25	Time Collected:	G:00 am
Tap Address: Www	ren County. Middle town Junctio	on Well Field	TW-2
() Public Sample (() PWS ID #: () Facility ID #	:	
() (New	Well Trans) Transient Noncommunit	у	Private
() (New	Well Nontrans) Nontransient-Noncor	nmunity + PFAS	
(New	Well Comm) Community Water Syst	ems + PFAS	
Work Order	Microbiological T	<u>'ests</u>	
5D00751-011	್ದ	Time Collecte	d
Office Use Only)	() 140 Total Coliform #1	0830	"
	() 1 to 1 our Contoin "1	hh:mm am/pm	<u> </u>
	() 140 Total Coliform #2		<u> </u>
			<u>- </u>
Office Use Only:	9 Mijtems		
	120		•
	PD 1510	Route	
	1510	Office/Lab	100 48

7940 Memorial Drive Plain City, Ohio 43064 (614) 873-4654

Date: May 12, 2025

National Water Services LLC (1384)

Attn: Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

RE: Certificate of Analysis for Project - Private Drinking Water

The following report contains analytical results for samples submitted on the chain of custody dated April 03, 2025.

I have reviewed the validity of the analytical data generated. All data is reported in accordance to our laboratory QA/QC plan. Any exceptions are noted in the Case Narrative or with qualifiers in the report.

If you have any questions or need additional documentation, please contact our Office.

Sincerely,

Cheryl Rex

MASI Laboratories

QA/QC Officer

cheryl@masilabs.com

Cheryl Rex

(614) 873-4654

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130 Client #: 1384 PO Number: 082652

PWSID: Facility ID:

Total Chlorine (mg/L):

Free Chlorine (mg/L):

Combined Chlorine (mg/L):

Repeat Sample #:

Date Received: 4/3/25 15:23

Ohio EPA Analyzed Date: 5/12/25 12:32

Sample Date/Time: 4/3/25 09:00

Sample Monitoring Point:

Sample Type:

Sample Tap/Address: Spigot Warren County Middletown Junction Well Field TW-2

Sample ID: 285707

Lab Sample # : 5D00747-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
EPA 200.8 Rev. 5.4									
Antimony, Total	<3.0	ug/L		3.0	3.0	04/03/25 09:00	04/08/25 13:47	SLB	EPA 200.8 Rev. 5.4
Thallium, Total	<1.0	ug/L		1.0	1.0	04/03/25 09:00	04/08/25 13:47	SLB	EPA 200.8 Rev. 5.4

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

Sampler Name: Josh Gavin Sample Date/Time: 4/3/25 09:00

Sample Monitoring Point:

Sample Type:

Sample Tap/Address: Spigot Warren County Middletown Junction Well Field TW-2

Client #: 1384 PO Number: 082652

Date Received: 4/3/25 15:23

Ohio EPA Analyzed Date: 5/12/25 12:32

PWSID: Facility ID:
Repeat Sample #:
Total Chlorine (mg/L):
Free Chlorine (mg/L):
Combined Chlorine (mg/L):

Sample ID: 285707

Lab Sample # : 5D00747-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Wet Chemistry Analysis									
Alkalinity, Total	287	mg/L CaCO3		4.00		04/10/25 09:44	04/10/25 09:44	JOL	SM 2320 B 2011
Chloride	59.2	mg/L		10.0	10.0	04/08/25 16:58	04/08/25 16:58	CPP	SM 4500Cl B 2011
Cyanide, Free	ND	ug/L (as free CN)		3.00	0.682	04/08/25 12:25	04/08/25 12:25	CDM	OIA-1677DW
Fluoride	0.20	mg/L		0.20	0.05	04/08/25 13:19	04/08/25 13:19	CPP	SM 4500 F C 2011
Nitrate-Nitrite	0.55	mg/L		0.50	0.19	04/04/25 09:15	04/04/25 14:28	CDM	EPA 353.2 Rev 2.0
Nitrate as Nitrate-Nitrite	0.553	mg/L		0.500	0.185	04/04/25 09:15	04/04/25 14:28	CDM	EPA 353.2 Rev 2.0
Nitrite	0.02	mg/L	J	0.10	0.01	04/03/25 17:00	04/03/25 17:41	JOL	EPA 353.2 Rev 2.0
pH (su)	7.3	su	HOLD			04/03/25 15:00	04/03/25 15:00	MMM	SM 4500H B 2011
Temperature (Centigrade)	19.6	su	HOLD			04/03/25 15:00	04/03/25 15:00	MMM	SM 4500H B 2011
Total Dissolved Solids/Total Filterable Residue	456	mg/L		10.0	4.0	04/07/25 17:05	04/07/25 17:05	JAC	SM 2540 C 2015
Sulfate	50.3	mg/L		20.0	4.1	04/08/25 00:00	04/08/25 00:00	JAC	SM 4500 SO42 E 2011
Metals Analysis									
Arsenic, Total	ND	ug/L		3	0.5	04/08/25 13:48	04/08/25 18:48	CJS	SM 3113 B 2010
Barium, Total	123	ug/L		25.0	0.5	04/09/25 12:38	04/09/25 12:38	KRM	EPA 200.7 1994
Beryllium, Total	ND	ug/L		1.0	0.06	04/09/25 12:38	04/09/25 12:38	KRM	EPA 200.7 1994
Cadmium, Total	ND	ug/L		1.0	0.2	04/09/25 12:38	04/09/25 12:38	KRM	EPA 200.7 1994
Calcium, Total	108	mg/L		2.0	0.09	04/10/25 09:45	04/10/25 09:45	KRM	EPA 200.7 1994
Chromium, Total	ND	ug/L		5.0	0.8	04/09/25 12:38	04/09/25 12:38	KRM	EPA 200.7 1994
Copper, Total	5	ug/L	J	50	1	04/08/25 11:08	04/08/25 11:08	KRM	EPA 200.7 1994
Iron, Total	29	ug/L	J	80	0.8	04/08/25 18:00	04/08/25 18:00	KRM	EPA 200.7 1994
Lead, Total	ND	ug/L		5.0	0.4	04/11/25 14:07	04/11/25 15:35	CJS	SM 3113 B 2010

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

Sample Date/Time: 4/3/25 09:00

Sample Monitoring Point: Sample Type:

Sample Tap/Address: Spigot Warren County Middletown Junction Well Field TW-2

Client #: 1384 PO Number: 082652

Date Received: 4/3/25 15:23

Ohio EPA Analyzed Date: 5/12/25 12:32

PWSID: Facility ID:
Repeat Sample #:
Total Chlorine (mg/L):
Free Chlorine (mg/L):
Combined Chlorine (mg/L):

Sample ID: 285707 (Continued) Lab Sample # : 5D00747-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Metals Analysis (Continued)									
Magnesium, Total	26.1	mg/L		5.0	0.04	04/10/25 09:45	04/10/25 09:45	KRM	EPA 200.7 1994
Manganese, Total	5	ug/L	J	20	0.6	04/08/25 18:00	04/08/25 18:00	KRM	EPA 200.7 1994
Mercury, Total	ND	ug/L		0.5	0.07	04/09/25 12:31	04/10/25 16:39	CJS	EPA 245.1 1994
Nickel, Total	ND	ug/L		10.0	1.2	04/09/25 12:38	04/09/25 12:38	KRM	EPA 200.7 1994
Selenium, Total	ND	ug/L		5.0	0.5	04/08/25 09:47	04/08/25 13:45	CJS	SM 3113 B 2010
Silver, Total	ND	ug/L		10.0	0.6	04/07/25 15:17	04/07/25 15:17	KRM	EPA 200.7 1994
Sodium, Total	30.7	mg/L		5.0	0.2	04/10/25 09:45	04/10/25 09:45	KRM	EPA 200.7 1994
Zinc, Total	16.0	ug/L		10.0	0.9	04/09/25 12:38	04/09/25 12:38	KRM	EPA 200.7 1994
Volatile Organic Chemicals (VOC)								
1,1,1-Trichloroethane	ND	ug/L		0.5	0.09	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,1,2-Trichloroethane	ND	ug/L		0.5	0.07	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,1-Dichloroethene	ND	ug/L		0.5	0.09	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,2,4-Trichlorobenzene	ND	ug/L		0.5	0.1	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,2-Dichlorobenzene	ND	ug/L		0.5	0.03	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,2-Dichloroethane	ND	ug/L		0.5	0.05	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,2-Dichloropropane	ND	ug/L		0.5	0.08	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
1,4-Dichlorobenzene	ND	ug/L		0.5	0.07	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Benzene	ND	ug/L		0.5	0.06	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Carbon Tetrachloride	ND	ug/L		0.5	0.08	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Chlorobenzene	ND	ug/L		0.5	0.04	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
cis-1,2-Dichloroethene	ND	ug/L		0.5	0.04	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Ethylbenzene	ND	ug/L		0.5	0.05	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Methylene Chloride	ND	ug/L		0.5	0.05	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Styrene	ND	ug/L		0.5	0.07	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW

Lancaster, OH 43130

Sampler Name: Josh Gavin Sample Date/Time: 4/3/25 09:00

Sample Monitoring Point: Sample Type:

Sample Tap/Address: Spigot Warren County Middletown Junction Well Field TW-2

Client #: 1384 PO Number: 082652

Date Received: 4/3/25 15:23

Ohio EPA Analyzed Date: 5/12/25 12:32

PWSID: Facility ID:
Repeat Sample #:
Total Chlorine (mg/L):
Free Chlorine (mg/L):
Combined Chlorine (mg/L):

Sample ID: 285707 (Continued) Lab Sample # : 5D00747-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Volatile Organic Chemicals (VOC	C) (Continu	ed)							
Tetrachloroethene	ND	ug/L		0.5	0.07	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Toluene	ND	ug/L		0.5	0.05	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
trans-1,2-Dichloroethene	ND	ug/L		0.5	0.1	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Trichloroethene	ND	ug/L		0.5	0.08	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Vinyl Chloride	ND	ug/L		0.5	0.1	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Total Xylenes	ND	ug/L		1.5	0.2	04/08/25 21:46	04/08/25 21:46	DTS	EPA Method 524.2
Surrogate: 4-Bromofluorobenzene			93%			70-130			EPA Method 524.2
Surrogate: 1,2-Dichlorobenzene-d4			82%			70-130			EPA Method 524.2
Synthetic Organic Compounds (SOC) Group	1							
Alachlor	ND	ug/L		0.20	0.07	04/11/25 11:37	04/18/25 02:50	MEM	EPA Method 525.2
Atrazine	ND	ug/L		0.30	0.07	04/11/25 11:37	04/18/25 02:50	MEM	EPA Method 525.2
Simazine	ND	ug/L		0.35	0.06	04/11/25 11:37	04/18/25 02:50	MEM	EPA Method 525.2
Surrogate: 1,3-Dimethyl-2-nitrobenzene			95%			70-130			EPA Method 525.2
Surrogate: Triphenylphosphate			73%			70-130			EPA Method 525.2
Surrogate: Perylene-d12			71%			70-130			EPA Method 525.2

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130 Client #: 1384 PO Number: 082652

Date Received: 4/3/25 15:23

Ohio EPA Analyzed Date: 5/12/25 12:32

Notes and Definitions

Item	Definition
HOLD	Exceeds Recommended Holding Time
J	Analyte was positively identified, the associated numerical value is estimated.
mg/kg Dry	Sample results reported on a dry weight basis
ug/L	ppb/Part per Billion
mg/L	ppm/Part per Million
ng/L	ppt/Part per Trillion
ND	Analyte NOT DETECTED at or above the method detection limit (MDL)
ļ.	Analyte is at or above the Maximum Contaminate Level
MDL	Method Detection Limit
CFU	Colony Forming Units
MPN	Most Probable Number
NTU	Nephelometric Turbidity Unit
pCi/L	Picocuries per liter
SVI	Sludge Volume Index
%	Percent
GPD	Gallons per Day
su	Standard Units
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

Notes:

- $1. \ \, \text{Calculated analytes are based on raw data and may not reflect the rounding of the individual compounds}.$
- 2. Samples are analyzed using the information received on the request sheet and may not be analyzed when the parameters fall outside required guidelines.

LABORATORIES 7940 Memorial Drive Plain City, OH 43064 614-873-4654

New

Analysis R

5D00747-01/2/3st Sheet

Received: 4/3/2025

on Bottle: Potable

285707

REVISED 2-15-23 DN

COOLER:

Matrix: ** See reverse for important side innormation *:

Client #: 1384	Client Name: National Water Sen	nius County: P.O.#_082652
Sampler Name:	Josh Gann SMP ID	:Sample Type/Class: () New Well/Special
		Time Collected: 4:00 am (hh:mm am/pm)
Tap Address: Www	er County. M: Alleton Jun	ction Well Field TW-Z
() Public Sample () PWS ID #: () Facility	
() (New	Well Trans) Transient Noncomm	unity Private
() (New)	Well Nontrans) Nontransient-Nor	ncommunity + PFAS
(New	Well Comm) Community Water S	Systems + PFAS
Work Order	Microbiologic	al Tests
5000751-011	್ಲ	Time Collected
Office Use Only)	() 140 Total Coliform #1	<u>0836</u> hh:mm am/pm
	() 140 Total Coliform #2	
Office Use Only:	9 pitems	
	12° FD 1510	Route Office/Lab

May 09, 2025

Audrey Cooper MASI Environmental Services 7940 Memorial Dr. Plain City, OH 43064

TEL: (614) 873-4654 FAX: (614) 873-3809

RE: 5D00747

Dear Audrey Cooper: Order No.: 25040461

Alliance Technical Group - Akron received 2 sample(s) on 4/4/2025 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative.

Quality control data is within laboratory defined or method specified acceptance limits except where noted.

If you have any questions regarding these tests results, please feel free to call the laboratory.

Sincerely,

Brian J. Fackelman

Project Manager, LIMS Administrator

3310 Win St.

Cuyahoga Falls, Ohio 44223

Arkansas 88-0735, California 2943, Colorado, Connecticut PH-0108, Florida NELAC E87688, Idaho OH00923, Illinois 200061, Indiana C-OH-13, ISO/IEC 17025:2017 119125 L22-544, Kansas E-10347, Kentucky (Underground Storage Tank) 3, Kentucky 90146, Maryland 339, Michigan 9988, Minnesota 1780279, Nevada OH009232020-1, New Hampshire 2996, New Jersey OH006, New York 11777, North Carolina 39705 and 631, North Dakota R-201, Ohio DW, Ohio VAP CL0052, Oklahoma 2019-155, Oregon OH200001, Pennsylvania 68-01335, Rhode Island LA000317, South Carolina 92016001, Texas T104704466-19-16, Utah OH009232020-12, Virginia VELAP 10381, West Virginia 9957C

VEAR ANNIVERSARY

Alliance Technical Group - Akron 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489

Website: http://www.settek.com

Case Narrative

WO#: **25040461**Date: **5/9/2025**

CLIENT: MASI Environmental Services

Project: 5D00747

WorkOrder Narrative:

25040461: This report in its entirety consists of the following documents: Cover Letter, Case Narrative, Analytical Results, QC Summary Report, Applicable Accreditation Information, Chain-of-Custody, Cooler Receipt Form, and other applicable forms as necessary. All documents contain the Alliance Technical Group Work Order Number assigned to this report.

Alliance Technical Group holds the accreditations/certifications listed at the bottom of the cover letter that may or may not pertain to this report. Please refer to the "Accreditation Program Analytes Report" for accredited analytes list.

The information contained in this analytical report is the sole property of Alliance Technical Group and that of the customer. It cannot be reproduced in any form without the consent of Alliance Technical Group or the customer for which this report was issued. The results contained in this report are only representative of the samples received. Conditions can vary at different times and at different sampling conditions. Alliance Technical Group is not responsible for use or interpretation of the data included herein.

All results for solid samples are reported on an "as received" or "wet weight" basis unless indicated as "dry weight" using the "-dry" designation on the reporting units.

This report is believed to meet all of the requirements of the accrediting agency, where applicable. Any comments or problems with the analytical events associated with this report are noted below.

WorkOrder Comments:

25040461: State required accreditation not specified; results may not be reported as certified data. Data is not for compliance per the chain of custody; data is for private use.

Analytical Sequence Sample Notes:

25040461-002A SVOC-EPA537_DW(537): Potential low bias due to LCS results, process in control with passing LCSD. Results confirmed via re-analysis. Unable to re-extract due to no remaining volume.

25040461-002A SVOC-EPA537_DW(537): Potential low bias due to low 13C3-HFPO-DA recovery, result confirmed via re-analysis.

Workorder Sample Summary

WO#: **25040461**

09-May-25

CLIENT: MASI Environmental Services

Project: 5D00747

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
25040461-001	5D00747-01		4/3/2025 9:00:00 AM	4/4/2025 3:30:00 PM	Drinking Water
25040461-001	5D00747-01		4/3/2025 9:00:00 AM	4/4/2025 3:30:00 PM	Drinking Water
25040461-002	5D00747-02 FRB		4/3/2025 9:00:00 AM	4/4/2025 3:30:00 PM	Drinking Water

25

Alliance Technical Group - Akron 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489

Website: http://www.settek.com

Analytical Report

(consolidated)

WO#: 25040461 Date Reported: 5/9/2025

Collection Date: 4/3/2025 9:00:00 AM

CLIENT: MASI Environmental Services

Project: 5D00747

Lab ID: 25040461-001 Matrix: DRINKING WATER

Client Sample ID: 5D00747-01

Analyses	Result	RL Qua	l Units	Uncertainty	y D F	Date Analyzed
GROSS ALPHA / GROSS BETA	RADIOACTIVITY (EPA 9	900.0)		E900.0	E900	Analyst: HDJ
ALPHA, Gross	ND	3.00	pCi/L	± 1.79	1	4/17/2025 10:30:00 AN
BETA, Gross	ND	4.00	pCi/L	± 1.79	1	4/17/2025 10:30:00 AN
RADIUM-228 (904.0)				E904.0	E903-90	4 Analyst: HDJ
Radium-228	ND	1.00	pCi/L	± 0.250	1	5/7/2025 2:45:00 PM
Yield	1.00				1	5/7/2025 2:45:00 PM

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

R RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

25 VER ANNIVERSARY Alliance Technical Group - Akron 3310 Win St. Cuyahoga Falls, Ohio 44223

TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com

Analytical Report

(consolidated)

WO#: 25040461 Date Reported: 5/9/2025

CLIENT: MASI Environmental Services Collection Date: 4/3/2025 9:00:00 AM

Project: 5D00747

Lab ID: 25040461-001 Matrix: DRINKING WATER

Client Sample ID: 5D00747-01

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
PFAS BY EPA 537.1 PERFLUORINATED ALKYL ACIDS	6 (EPA 537.1)		E537.1	E5:	37.1 Analyst: JJF
PFBS	2.26	1.88	ng/L	1	4/17/2025 12:28:00 PM
PFHxS	ND	1.88	ng/L	1	4/17/2025 12:28:00 PM
PFOA	2.40	1.88	ng/L	1	4/17/2025 12:28:00 PM
PFOS	16.4	1.88	ng/L	1	4/17/2025 12:28:00 PM
PFNA	ND	1.88	ng/L	1	4/17/2025 12:28:00 PM
HFPO-DA	ND	1.88	ng/L	1	4/17/2025 12:28:00 PM
Surr: 13C2-PFDA	108	70 - 130	%Rec	1	4/17/2025 12:28:00 PM
Surr: 13C2-PFHxA	102	70 - 130	%Rec	1	4/17/2025 12:28:00 PM
Surr: 13C3-HFPO-DA	88.6	70 - 130	%Rec	1	4/17/2025 12:28:00 PM

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

R RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

VEAR ANNIVERSARY

Alliance Technical Group - Akron 3310 Win St. Cuyahoga Falls, Ohio 44223

TEL: (330) 253-8211 FAX: (330) 253-4489 Website: http://www.settek.com **Analytical Report**

(consolidated)

WO#: **25040461**Date Reported: **5/9/2025**

CLIENT: MASI Environmental Services Collection Date: 4/3/2025 9:00:00 AM

Project: 5D00747

Lab ID: 25040461-002 Matrix: DRINKING WATER

Client Sample ID: 5D00747-02 FRB

Analyses	Result	RL (Qual	Units	DF	Date Analyzed
PFAS BY EPA 537.1 PERFLUORINATED ALKYL ACIDS	(EPA 537.1)			E537.1	E53	37.1 Analyst: JJF
PFBS	ND	1.76	QL-	ng/L	1	4/10/2025 3:49:00 PM
PFHxS	ND	1.76		ng/L	1	4/10/2025 3:49:00 PM
PFOA	ND	1.76	QL-	ng/L	1	4/10/2025 3:49:00 PM
PFOS	ND	1.76		ng/L	1	4/10/2025 3:49:00 PM
PFNA	ND	1.76		ng/L	1	4/10/2025 3:49:00 PM
HFPO-DA	ND	1.76		ng/L	1	4/10/2025 3:49:00 PM
Surr: 13C2-PFDA	89.3	70 - 130		%Rec	1	4/10/2025 3:49:00 PM
Surr: 13C2-PFHxA	71.8	70 - 130		%Rec	1	4/10/2025 3:49:00 PM
Surr: 13C3-HFPO-DA	63.4	70 - 130	S	%Rec	1	4/10/2025 3:49:00 PM

Qualifiers: H Holding times for preparation or analysis exceeded

ND Not Detected

R RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

M Manual Integration used to determine area response

PL Permit Limit

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID:** 83496

Sample ID: MB-83496	SampType: MBLK	TestCode: SVOC-EP	A53 Units: ng/L		Prep Date	e: 4/8/2025	RunNo: 2067	57	
Client ID: BatchQC	Batch ID: 83496	TestNo: E537.1	E537.1	,	Analysis Date	e: 4/10/2025	SeqNo: 5534	222	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	ND	2.00							
PFHxS	ND	2.00							
PFOA	ND	2.00							
PFOS	ND	2.00							
PFNA	ND	2.00							
HFPO-DA	ND	2.00							
Surr: 13C2-PFDA	0.0400	0.04000		99.9	70	130			
Surr: 13C2-PFHxA	0.0315	0.04000		78.8	70	130			
Surr: 13C3-HFPO-DA	0.0287	0.04000		71.7	70	130			
Surr: NETFOSAA-d5	0.155	0.1600		96.9	70	130			

Sample ID: LCS-83496 Client ID: BatchQC	SampType: LCS Batch ID: 83496		de: SVOC-EP No: E537.1	A53 Units: ng/L E537.1	Prep Date: 4/8/2025 Analysis Date: 4/10/2025			RunNo: 206 SeqNo: 55 3			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	23.1	2.00	35.4	0	65.3	70	130				SQLR
PFHxS	32.8	2.00	36.5	0	90.0	70	130				
PFOA	27.1	2.00	40.0	0	67.8	70	130				S
PFOS	33.8	2.00	37.0	0	91.2	70	130				
PFNA	29.6	2.00	40.0	0	74.0	70	130				
HFPO-DA	28.7	2.00	40.0	0	71.7	70	130				
Surr: 13C2-PFDA	0.0358		0.04000		89.5	70	130				

Qualifiers: H Holding times for preparation or analysis exceeded

PL Permit Limit

S Spike Recovery outside accepted recovery limits

Manual Integration used to determine area response

RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

ND Not Detected

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID:** 83496

Sample ID: LCS-83496 Client ID: BatchQC	SampType: LCS Batch ID: 83496	TestNo: E537.1 Units: ng/L	Prep Date: 4/8/2025 Analysis Date: 4/10/2025	RunNo: 206757 SeqNo: 5534227
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Va	al %RPD RPDLimit Qual
Surr: 13C2-PFHxA	0.0313	0.04000	78.2 70 130	
Surr: 13C3-HFPO-DA	0.0281	0.04000	70.2 70 130	
Surr: NETFOSAA-d5	0.143	0.1600	89.5 70 130	

Sample ID: LCSD-83496	SampType: LCSD	TestCo	de: SVOC-EP	A53 Units: ng/L		Prep Dat	e: 4/8/202	5	RunNo: 20 6	3 7 57	
Client ID: BatchQC	Batch ID: 83496	TestN	No: E537.1	E537.1		Analysis Dat	e: 4/10/2 0	25	SeqNo: 553	34232	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	29.1	2.00	35.4	0	82.3	70	130	23.1	23.0	20	R
PFHxS	35.7	2.00	36.5	0	97.8	70	130	32.8	8.39	20	
PFOA	29.0	2.00	40.0	0	72.5	70	130	27.1	6.77	20	
PFOS	36.4	2.00	37.0	0	98.1	70	130	33.8	7.35	20	
PFNA	31.8	2.00	40.0	0	79.5	70	130	29.6	7.17	20	
HFPO-DA	33.8	2.00	40.0	0	84.6	70	130	28.7	16.5	20	
Surr: 13C2-PFDA	0.0372		0.04000		92.9	70	130		0	20	
Surr: 13C2-PFHxA	0.0337		0.04000		84.2	70	130		0	20	
Surr: 13C3-HFPO-DA	0.0301		0.04000		75.2	70	130		0	20	
Surr: NETFOSAA-d5	0.144		0.1600		90.1	70	130		0	20	

Qualifiers: H Holding times for preparation or analysis exceeded

PL Permit Limit

S Spike Recovery outside accepted recovery limits

Manual Integration used to determine area response

RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

ND Not Detected

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID:** 83622

Sample ID: MB-83622	SampType: MBLK	TestCode: SVOC-E	PA53 Units: ng/L	Prep Date: 4/14/2025				RunNo: 20 7	7261	
Client ID: BatchQC	Batch ID: 83622	TestNo: E537.1	E537.1		Analysis Da	te: 4/17/20 2	25	SeqNo: 554	46660	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	ND	2.00								
PFHxS	ND	2.00								
PFOA	ND	2.00								
PFOS	ND	2.00								
PFNA	ND	2.00								
HFPO-DA	ND	2.00								
Surr: 13C2-PFDA	0.0438	0.04000	1	109	70	130				
Surr: 13C2-PFHxA	0.0396	0.04000	1	99.0	70	130				
Surr: 13C3-HFPO-DA	0.0353	0.04000	1	88.3	70	130				
Surr: NETFOSAA-d5	0.181	0.1600)	113	70	130				

Sample ID: LCS-83622 Client ID: BatchQC	SampType: LCS Batch ID: 83622		de: SVOC-EP No: E537.1	A53 Units: ng/L E537.1	Prep Date: 4/14/2025 Analysis Date: 4/17/2025			RunNo: 207 SeqNo: 554			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	27.8	2.00	35.4	0	78.6	70	130				
PFHxS	33.9	2.00	36.5	0	92.9	70	130				
PFOA	28.6	2.00	40.0	0	71.4	70	130				
PFOS	36.2	2.00	37.0	0	97.8	70	130				
PFNA	34.0	2.00	40.0	0	85.0	70	130				
HFPO-DA	32.8	2.00	40.0	0	81.9	70	130				
Surr: 13C2-PFDA	0.0355		0.04000		88.7	70	130				

Qualifiers: H Holding times for preparation or analysis exceeded

PL Permit Limit

S Spike Recovery outside accepted recovery limits

Manual Integration used to determine area response

RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

ND Not Detected

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID:** 83622

Sample ID: LCS-83622	SampType: LCS	TestCode: SVOC-EPA53 Units: ng/L	Prep Date: 4/14/2025	RunNo: 207261
Client ID: BatchQC	Batch ID: 83622	TestNo: E537.1 E537.1	Analysis Date: 4/17/2025	SeqNo: 5546661
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Surr: 13C2-PFHxA	0.0336	0.04000	84.1 70 130	
Surr: 13C3-HFPO-DA	0.0299	0.04000	74.6 70 130	
Surr: NETFOSAA-d5	0.160	0.1600	99.9 70 130	

Sample ID: LCSD-83622	SampType: LCSD	TestCo	de: SVOC-EP	A53 Units: ng/L		Prep Da	te: 4/14/2 0	25	RunNo: 207261		
Client ID: BatchQC	Batch ID: 83622	TestN	No: E537.1	E537.1		Analysis Da	te: 4/17/2 0	25	SeqNo: 5546662		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	29.6	2.00	35.4	0	83.5	70	130	27.8	6.02	20	
PFHxS	34.3	2.00	36.5	0	94.0	70	130	33.9	1.23	20	
PFOA	28.3	2.00	40.0	0	70.8	70	130	28.6	0.829	20	
PFOS	36.1	2.00	37.0	0	97.4	70	130	36.2	0.409	20	
PFNA	32.3	2.00	40.0	0	80.8	70	130	34.0	4.99	20	
HFPO-DA	32.3	2.00	40.0	0	80.8	70	130	32.8	1.41	20	
Surr: 13C2-PFDA	0.0365		0.04000		91.2	70	130		0	20	
Surr: 13C2-PFHxA	0.0351		0.04000		87.8	70	130		0	20	
Surr: 13C3-HFPO-DA	0.0309		0.04000		77.3	70	130		0	20	
Surr: NETFOSAA-d5	0.163		0.1600		102	70	130		0	20	

Qualifiers: H Holding times for preparation or analysis exceeded

PL Permit Limit

S Spike Recovery outside accepted recovery limits

Manual Integration used to determine area response

RPD outside accepted recovery limits

V Sample container temperature is out of limit as specified at testcode

ND Not Detected

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID:** 83705

Sample ID: MB-83705	SampType: MBLK	TestCode: AlphaBeta_I		Prep Da	te: 4/15/20)25	RunNo: 20	7667		
Client ID: BatchQC	Batch ID: 83705	TestNo: E900.0	No: E900.0 E900			Analysis Date: 4/17/2025				
Analyte	Result	PQL SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ALPHA, Gross	ND	3.00								
BETA, Gross	ND	4.00								

Sample ID: LCS-83705 Client ID: BatchQC	SampType: LCS Batch ID: 83705		de: AlphaBeta lo: E900.0	_D Units: pCi/L E900	Prep Date: 4/15/2025 Analysis Date: 4/17/2025				RunNo: 207 SeqNo: 55		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ALPHA, Gross BETA, Gross	12.0 15.6	3.00 4.00	15.00 20.00	0 0	79.8 78.2	70 70	130 130				

Sample ID: RLC-83705 Client ID: BatchQC	SampType: RLC Batch ID: 83705		TestCode: AlphaBeta_D Units: pCi/L TestNo: E900.0 E900			•	te: 4/15/20		RunNo: 207 SegNo: 555		
Analyte	Result	PQL		SPK Ref Val	%REC	,		RPD Ref Val	%RPD	RPDLimit	Qual
ALPHA, Gross BETA, Gross	ND 4.99	3.00 4.00	3.000 4.000	0	51.1 125	50 50	150 150				

Qualifiers: H Holding times for preparation or analysis exceeded

PL Permit Limit

S Spike Recovery outside accepted recovery limits

Manual Integration used to determine area response

RPD outside accepted recovery limits

V Sample container temperature is out of limit as specified at testcode

ND Not Detected

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID: 84183**

Sample ID: MB-84183 Client ID: BatchQC	SampType: MBLK Batch ID: 84183	TestCode: Radium-228 _ Units: p TestNo: E904.0 E903-90	·	RunNo: 208450 SeqNo: 5574285		
Analyte	Result	PQL SPK value SPK Ref Va	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual		
Radium-228 Yield	ND 1.00	1.00 C	0 0			

Sample ID: LCS-84183	SampType: LCS	TestCod	e: Radium-2	28_ Units: pCi/L		Prep Da	te: 5/1/202	5	RunNo: 20 8	3450	
Client ID: BatchQC	Batch ID: 84183	TestN	o: E904.0	E903-904		Analysis Da	te: 5/7/202	5	SeqNo: 557	74286	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228 Yield	3.58 1.00	1.00	5.000	0	71.6 0	50	130				

Sample ID: LCSD-84183 Client ID: BatchQC	SampType: LCSD Batch ID: 84183		de: Radium-22	28_ Units: pCi/L E903-904		Prep Dat	e: 5/1/202		RunNo: 208 SegNo: 557		
Analyte	Result	PQL		SPK Ref Val	%REC	•		RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228	4.07	1.00	5.000	0	81.4	50	130	3.580	12.8	20	
Yield	1.00			0	0			1.000	0		

Qualifiers: H Holding times for preparation or analysis exceeded

PL Permit Limit

S Spike Recovery outside accepted recovery limits

Manual Integration used to determine area response

RPD outside accepted recovery limits

W Sample container temperature is out of limit as specified at testcode

ND Not Detected

QC SUMMARY REPORT

WO#:

25040461

09-May-25

Client: MASI Environmental Services

Project: 5D00747 **BatchID:** 84183

Sample ID: RLC-84183 Client ID: BatchQC	SampType: RLC Batch ID: 84183		de: Radium-2	28_ Units: pCi/L E903-904		Prep Da	te: 5/1/202		RunNo: 208 SegNo: 55 7		
Analyte	Result	PQL		SPK Ref Val	%REC	·		RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228 Yield	ND 1.00	1.00	1.000	0 0	79.0 0	50	150				

Sample ID: RLCD-84183	SampType: RLC	TestCod	de: Radium-2	28_ Units: pCi/L		Prep Dat	te: 5/1/202	5	RunNo: 20 8	3450	
Client ID: BatchQC	Batch ID: 84183	TestN	lo: E904.0	E903-904		Analysis Da	te: 5/7/202	5	SeqNo: 557	74290	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228	ND	1.00	1.000	0	59.0	50	150				
Yield	1.00			0	0						

PL Permit Limit

S Spike Recovery outside accepted recovery limits

RPD outside accepted recovery limits

V Sample container temperature is out of limit as specified at testcode

RL Reporting Detection Limit

25

Alliance Technical Group - Akro 3310 Win S Cuyahoga Falls, Ohio 4422

TEL: (330) 253-8211 FAX: (330) 253-448 Website: http://www.settek.co. **Qualifiers and Acronyms**

WO#: **25040461**Date: **5/9/2025**

These commonly used Qualifiers and Acronyms may or may not be present in this report.

Qualifiers

U The compound was analyzed for but was not detected abo	bove the MDL.
--	---------------

- The reported value is greater than the Method Detection Limit but less than the Reporting Limit.
- H The hold time for sample preparation and/or analysis was exceeded. Not Clean Water Act compliant.
- **D** The result is reported from a dilution.
- **E** The result exceeded the linear range of the calibration or is estimated due to interference.
- **MC** The result is below the Minimum Compound Limit.
- * The result exceeds the Regulatory Limit or Maximum Contamination Limit.
- m Manual integration was used to determine the area response.
- **d** Manual integration in which peak was deleted
- N The result is presumptive based on a Mass Spectral library search assuming a 1:1 response.
- **P** The second column confirmation exceeded 25% difference.
- C The result has been confirmed by GC/MS.
- X The result was not confirmed when GC/MS Analysis was performed.
- B The analyte was detected in the Method Blank at a concentration greater than the RL.

 MB+ The analyte was detected in the Method Blank at a concentration greater than the MDL.
- **G** The ICB or CCB contained reportable amounts of analyte.
- **QC-/+** The CCV recovery failed low (-) or high (+).
- **R/QDR** The RPD was outside of accepted recovery limits.
- **QL-/+** The LCS or LCSD recovery failed low (-) or high (+).
- **QLR** The LCS/LCSD RPD was outside of accepted recovery limits.
- **QM-/+** The MS or MSD recovery failed low (-) or high (+).
- QMR The MS/MSD RPD was outside of accepted recovery limits.
- **QV-/+** The ICV recovery failed low (-) or high (+).
- S The spike result was outside of accepted recovery limits.
- W Samples were received outside temperature limits ($0^{\circ} 6^{\circ}$ C). Not Clean Water Act compliant.
- **Z** Deviation; A deviation from the method was performed; Please refer to the Case Narrative for
 - additional information

Acronyms

ND	Not Detected	\mathbf{RL}	Reporting Limit
QC	Quality Control	MDL	Method Detection Limit
MB	Method Blank	LOD	Level of Detection
LCS	Laboratory Control Sample	LOQ	Level of Quantitation
LCSD	Laboratory Control Sample Duplicate	PQL	Practical Quantitation Limit
QCS	Quality Control Sample	CRQL	Contract Required Quantitation Limit
DUP	Duplicate	PL	Permit Limit
MS	Matrix Spike	RegLvl	Regulatory Limit
MSD	Matrix Spike Duplicate	MCL	Maximum Contamination Limit
RPD	Relative Percent Different	MinCL	Minimum Compound Limit
ICV	Initial Calibration Verification	RA	Reanalysis
ICB	Initial Calibration Blank	RE	Reextraction
CCV	Continuing Calibration Verification	TIC	Tentatively Identified Compound
CCB	Continuing Calibration Blank	RT	Retention Time
RLC	Reporting Limit Check	CF	Calibration Factor

This list of Qualifiers and Acronyms reflects the most commonly utilized Qualifiers and Acronyms for reporting. Please refer to the Analytical Notes in the Case Narrative for any Qualifiers or Acronyms that do not appear in this list or for additional information regarding the use of these Qualifiers on reported data.

SUBCONTRACT

Sending Laboratory:

Mobile Analytical Services, Inc.

7940 Memorial Dr Plain City, OH 43064 Phone: 614-873-4654

Project Manager: Audrey Cooper

Subcontracted Laboratory:

Summit Environmental Technologies (5626)

3310 Win Street

Cuyahoga Falls, OH 44223

Phone: (330) 253-8211

Work Order: 5D00747

Analysis	Expires	Method	Comments	Privale
Sample ID: 5D00747-01 Potable	e Sampled: 04/03/2025	09:00		
PFOA/PFOS M537 Regulated List	04/17/2025 09:00		_	
Radium-228	09/30/2025 09:00		. 1	
Gross Beta	09/30/2025 09:00	Rec 2	PEAS contained	5
Gross Alpha	09/30/2025 09:00	-		-
Containers Supplied:				
		CPM10	DV I	
Sample ID: 5D00747-02 Potable	e Sampled: 04/03/2025	09:00	, , ,	

PFOA/PFOS M537 Regulated List Field Blanl 04/17/2025 09:00

Containers Supplied:

1.8-00 1.80; ATGalowler, ice

Lace 4.4.25 Released By

15 3Page 15 of 16

414127 1830

Page 1 of 1 79**4**0 Memorial Drive Plain City, Ohio 43064 (614) 873-4654

Alliance Technical Group - Akron 3310 Win St. Cuyahoga Falls, Ohio 44223 TEL: (330) 253-8211 FAX: (330) 253-4489

Sample Log-In Check List

Website: http://www.settek.com

Client Na	ıme:	MAS-OH-43	017	Work Order N	Number: 2	250404	161			Rcpt	tNo: 1	
Logged b	oy:	Tegan A. Rid	chards	4/4/2025 3:30:	00 PM			Legar	nio	hools		
Complete	ed By:	Tegan A. Rid	chards	4/5/2025 1:06:	15 PM			Legar Legar	nio	hools		
Reviewed	d By:	Brian J. Fac	kelman	4/7/2025 2:35:	41 PM			68	n			
Chain o	of Cus	stody										
1. Is Ch	hain of	Custody comp	plete?			Yes		No	✓	Not Present		
2. How	was th	e sample deli	vered?			Alliar	<u>nce</u>					
<u>Log In</u>												
3. Cool	lers are	present?				Yes	✓	No		NA		
4 Ship	ping co	ontainer/coole	r in good condition	?		Yes	✓	No				
			hipping container/			Yes		No		Not Present	✓	
No.			Seal Date:			Signe	ed By:					
5. Was	an att	empt made to	cool the samples	?		Yes	-	No		NA		
6. Wer	e all sa	mples receive	ed at a temperature	e of >0° C to 6.0	0°C	Yes	✓	No		NA		
7. Sam	ple(s)	in proper cont	ainer(s)?			Yes	✓	No				
			for indicated test((s)?		Yes	✓	No				
_			A and ONG) prope			Yes	✓	No				
_		rvative added		,		Yes		No	✓	NA		
11. Is the	e head	space in the \	OA vials less thar	n 1/4 inch or 6 m	ım?	Yes		No		No VOA Vials	•	
12. Wer	e any s	ample contair	ners received brok	en?		Yes		No	✓			
-		rwork match b epancies on c	ottle labels? hain of custody)			Yes	✓	No				
14. Are i	matrice	es correctly ide	entified on Chain o	f Custody?		Yes	✓	No				
15. Is it o	clear w	hat analyses	were requested?			Yes	✓	No				
-		-	ole to be met? authorization.)			Yes	✓	No				
		dling (if ap)										
17. Was	client	notified of all	discrepancies with	this order?		Yes		No		NA	•	
	Perso	n Notified:			Date:							
	By WI	nom:			Via:	eMa	il 🗌 P	hone 🗌	Fax	In Person		
	Regar	ding:										
	Client	Instructions:										
18. Addi	itional r	emarks:										
	Projec	t information	(address/state), pr	eservation, and	Inumber	of cont	ainers n	ot record	ed on C	COC.		
Cooler Inf	<u>ormati</u>	<u>on</u>										
C	ooler				Seal I	No	Seal D	ate Si	gned l	Зу		
1		1.8	Goo	Not Present								
					Page 1	6 <u>o</u> f 1	5					