

TECHNICAL MEMORANDUM

SUBJECT: Well MJ-PW3 Evaluation, Middletown-Junction Property, Warren County, Ohio

PREPARED BY: Brent E. Huntsman, CPG & Kelly C. Smith, CPG Terran Corporation, Beavercreek, Ohio.

DATE: May 12, 2025

SUMMARY

Terran Corporation, on behalf of Warren County Water & Sewer Dept. (WCW&SD), submits the following technical memorandum to document the installation and testing of production well MJ-PW3 for final approval by the Ohio Environmental Protection Agency, Southwest District Office (Ohio EPA, SWDO) for use as a Public Water System, Community Water Supply (PWS CWS) well. The production well was designed using the Ohio EPA "green book" as a guide to compliance with rules and procedures governing PWS CWS wells (i.e. Ohio EPA, 2023).

WCW&SD submits for consideration the following details concerning MJ-PW3:

- MJ-PW3 is a 16-inch diameter, 85-feet deep production well located on the northeast side of the Middletown-Junction property, situated next to the Little Miami River (LMR). The LMR is the primary source water supply for the proposed Middletown Junction Wellfield (Figure 1).
- 2) The ODNR well log (#3022156) for MJ-PW3 is provided in Attachment #1.
- 3) The well's coordinates are: latitude: 39.3637051; longitude: -84.2402975.
- 4) MJ-PW3 is constructed with a stainless steel, wire-wrapped screen consists of 20-feet of 0.070 slot openings set from 65 to 85 feet below ground surface (ft. bgs) at the bottom of the aquifer. A #4 quartz sand filter pack was constructed around the screen from 55 feet to 85 feet. A bentonite seal was placed over the filter pack followed by cement grout from 54.5 ft. bgs to grade (Figure 7).
- 5) During the March 2025 24-hour constant rate test (CRT), MJ-PW3 sustained a pumping rate of 1,500 gallons per minute (gpm). WCW&SD is requesting an Ohio EPA approved permanent pump design rating of 1,000 gpm for MJ-PW3.
- 6) MJ-PW3 CRT analysis of data from the pumping and monitoring wells indicated the aquifer's apparent transmissivity values range from 8,300 to 23,600 feet squared per day (ft²/day), averaging about 13,650 ft²/day. Assuming a representative saturated aquifer thickness of 71 feet, calculated hydraulic conductivity values range from 117 to 332 feet per day (ft/day) and averages about 190 ft/day. Aquifer storativity values varied from 2.00 x10⁻¹² to 1.03 x 10⁻¹ and averaged 2.19x10⁻². The range in storativity estimates is consistent with a semi-confined aquifer.

The replacement well's groundwater quality parameters meet Federal Maximum Contaminant Levels (MCLs) and Secondary MCLs (SMCLs) with the exception for the per- and polyfluoroalkyl substances (PFAS) constituent Perfluorooctane Sulfonate (PFOS) at 0.0166 μ g/L (associated with the surface water quality of the Little Miami River), and the naturally-occurring metals of iron and manganese which are constituents routinely treated at the water treatment facility (Tables 4 and 5).

Coarse cobbled gravel outwash as encountered at production well MJ-PW3.

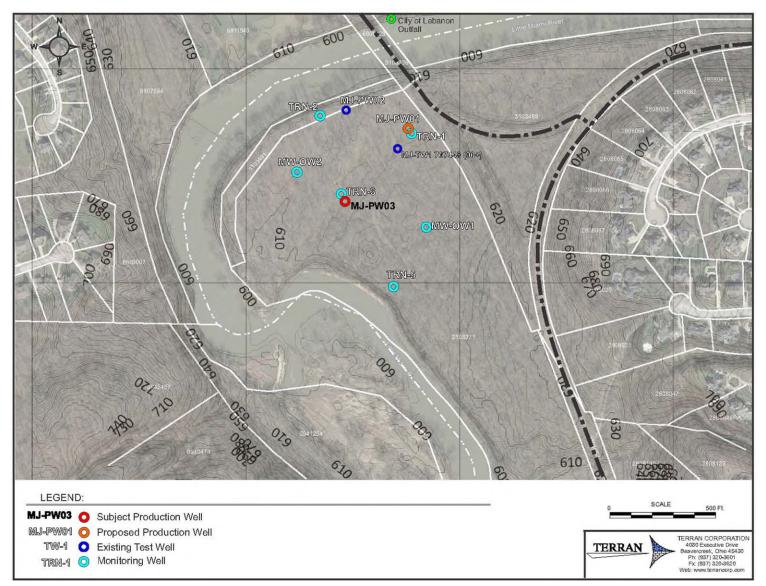


Figure 1. Location of production well MJ-PW3 and monitoring wells at the Middletown-Junction property.

Well Drilling and Construction Description

Drilling of MJ-PW3 was conducted during August 22-2025 with the installation of a 20inch outer casing using a cable tool rig. National Water Services, LLC (NWS) mobilized a truck-mounted 28-L cable tool rig to the site in late August to set the 24-inch steel casing (Figure 2). The 20-inch casing was driven down and bailed to the bottom of the aquifer, a course sand and gravel outwash deposit (Figure 3), encountering bedrock at 82 feet. The proposed well screen and casing design (Attachment #1) was prepared by NWS based on samples of the formation collected on 5-foot intervals to characterize the aquifer's grain size distribution.

Figure 2. Production well MJ-PW3 under construction at the Middletown-Junction property, August 2024.

Figure 3. Course cobble outwash sand and gravel as found at MJ-PW3, August 2024.

Construction of MJ-PW3 was constructed during January-February 2025. MJ-PW3 was constructed with a 0.070-inch slot, 20-foot length of screen set from 65 to 85 ft. bgs. The 16-inch carbon steel casing sections were welded together including centralizers welded to the exterior casing (Figure 4). These were used to center the well inside the outer casing. The 24-inch casing was then pulled up using hydraulic jacks to expose the well screen and casing as the well was constructed.

A #4 quarry sand filter pack was constructed around the screen from 55 to 85 ft. bgs (Figure 5). A bentonite pellet seal, 0.5-feet in thickness was constructed on top of the filter pack (top of seal 54.5 ft. bgs). The remainder of the casing annular space was grouted shut using 92-bags Portland cement grout to seal the annular space from 54.5 ft. bgs to grade (Figure 6). MJ-PW3 was completed on February 4, 2025 in terms of its screen, casing, filter pack and annular sealing. The "as built" diagram of the well is provided in Figure 7. MJ-PW03 will be completed as a submersible pump operated well (Figure 7).

All of the well's final construction features, such as the pitless adaptor, submersible pump and supporting appurtenances will be installed according to WCW&SD plans at a later date when the well field is constructed under a separate contract and contractor. The proposed pump is an American-Marsh Pump capable of pumping 500 to 1,100 gpm under a total dynamic head pressure of 284 feet. A copy of the proposed pump performance data sheets are provided in Attachment #2 of this memorandum.

Figure 4. NWS constructing the MJ-PW3 screen and well casing on January 28, 2025.

Figure 5. No. 4 Parry sand pack being placed around the well screen, January 30, 2025.

Figure 6. NWS using tremie equipment to seal the annular space of well MJ-PW3 with cement grout, February 4, 2025.

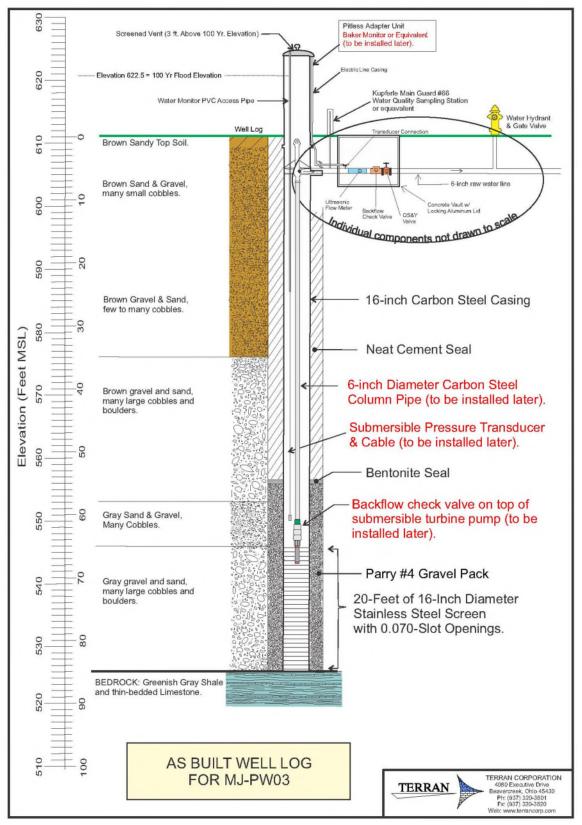


Figure 7. As built diagram for production well MJ-PW3.

Well Development

MJ-PW3 was developed in accordance with OAC 3745-9-09 to remove the native silt and sand of the filter pack. Development was conducted by repeated surging of the well screen while air-lift pumping the water at a rate of approximately 100 gpm to remove the formation fines (Figure 8). Development was conducted during February and March 2025, and effectively removed the silt and sand from around the screen. This was confirmed using a using a Rossum Sand Tester throughout the development process. After completion of development, subsequent measurements of sand accumulation in the tester from well discharge during the SDT and CRT was hardly visible.

Figure 8. Well development of MJ-PW3 during February-March 2025.

Hydrogeologic Setting

The hydrogeologic setting of the subject area was characterized through the drilling of soil borings TRN-1 to TRN-7 with the installation of monitoring wells TRN-1, TRN-2, TRN-3 and TRN-5 (Terran Corp., 2022b). The site hydrogeology consists of stratified glacial outwash comprising a single buried valley aquifer (BVA) contained within a deeply incised bedrock valley (Figure 9). The BVA is primarily a semi-confined aquifer and MJ-PW3 is screened at the bottom of this aquifer at its location.

Depth to groundwater is shallow, ranging from approximately 16 to 24 ft. bgs as measured in the monitoring and test wells (Table 1). Water levels for monitoring wells TRN-1, TRN-2 and TRN-3 located throughout the site (Figure 1) reflect the hydrodynamic activity at the Middletown-Junction property. Water levels in the three wells during March and April 2023 fluctuated on the order of 3 to 4 feet in response to high water events along the Little Miami River as measured at the U.S. Geological Survey (USGS) station 03242050 at South Lebanon (Figure 10).

Groundwater modeling of the Middletown-Junction property was conducted to evaluate the production potential of the proposed well field (Terran Corp., 2022a and 2023). The modeling results indicated a well field capable of producing 2.5 million gallons per day (MGD) is possible through three production wells, pumping between 550 to 600 gpm each. Based on the aquifer testing of the test wells at the property, the model was revised and determined that the aquifer has potential for 3.0 MGD production using two new production wells. The existing 16-inch production test well is designated as a backup well.

During the process for site approval, of the Middletown-Junction property, the Ohio EPA expressed concern regarding the City of Lebanon's WWTP outfall occurring in proximity to the proposed well field. To address the concern, Terran conducted fate and transport (F&T) modeling of the outfall using chloride as the constituent of concern to evaluate potential long term impact to the well field under 3.0 MGD operation using proposed production wells MJ-PW! and MJ-PW3 (Terran Corp., 2024a). The existing production test well, MJ-TW2, is proposed for use as a backup well MJ-PW2 (Terran Corp., 2024b). Results of the F&T modeling indicated the location of the outfall with respect to the well field and the surface flow of the Little Miami River and the silty nature of the Little Miami River's bed will sufficiently protect the water quality of the Middletown-Junction well field.

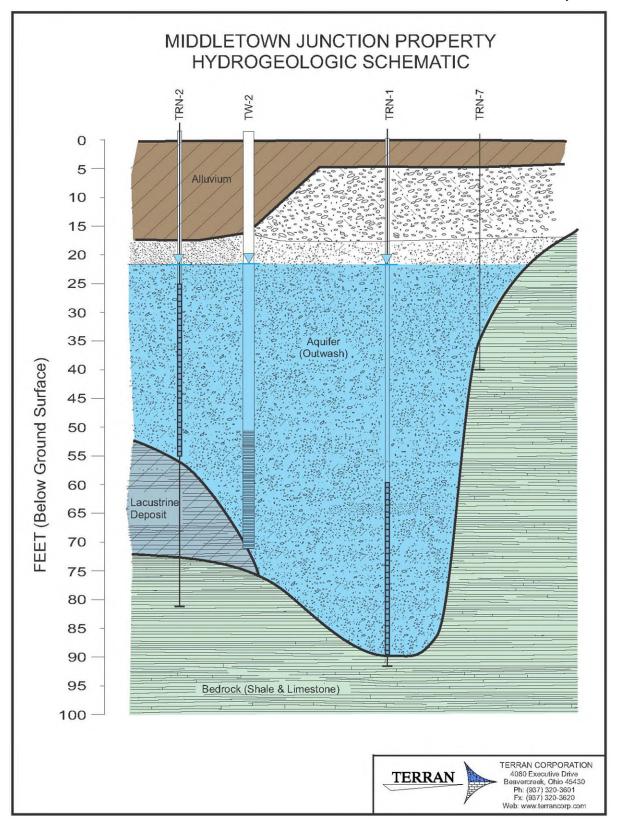


Figure 9. Conceptual hydrogeologic profile of buried valley aquifer at the Middletown-Junction property.

Table 1. Sum	inary of Or	ounawater i		isur ements	at the Miu	uictown-ju		perty.	
	MJ-	MJ-	MJ-	MJ-	MJ-	MJ-	MJ-	MJ-	
Date	TRN1	TRN2	TRN3	TRN5	OW1	OW2	TW1	TW2	
	Depth to Groundwater (Feet below top-of-casing)								
11/14/2022	22.70	22.40	20.02	24.85					
12/29/2022	22.91	22.65	20.22		25.45		22.36	19.25	
1/4/2023	21.55	21.27	18.83	23.53	24.09	18.82	20.98	17.88	
1/10/2023	21.63	21.39	18.99	23.81	24.20	18.97	21.13	18.09	
1/11/2023	21.75	21.49	19.09	23.91	24.30	19.10	21.21	18.16	
1/18/2023	21.28	21.01	18.59	23.42	23.79	18.60	20.76	17.64	
1/27/2023	20.47	20.18	17.73	22.49	22.96	17.75	19.95	16.83	
2/2/2023	20.59	20.33	17.93	22.78	23.15	17.94	20.09	16.98	
3/1/2023	21.46	21.17	18.74	23.54	23.97	18.79	20.57	17.76	
4/11/2023	19.04	18.82	16.48	21.60	21.67	16.44	18.23	15.41	
4/12/2023	20.07	19.78	17.41	22.33	22.60	17.36	19.68	16.39	
5/2/2023	21.30	21.04	18.61	23.31	23.84	18.61	20.48	17.67	
5/18/2023	21.30	21.03	18.66		23.84	18.75	20.48	17.65	
5/24/2023	21.87	21.62	19.19	24.06	24.44	19.25	21.34	17.94	
6/1/2023	22.52	22.28	19.87	24.68	25.09	19.87	22.00	22.28	
12/11/2024	22.40	22.43	20.00	24.80	25.22		21.84	20.01	
12/17/2024	22.58	22.03	19.59	24.22	24.81	19.58	21.44	18.61	
2/25/2025	19.71	19.63	16.95			17.21	18.70	16.12	
3/7/2025	20.99	20.75	18.34	23.20	23.55	18.32	20.15	17.40	
3/14/2025	22.41	22.12	19.70	24.40	24.91	19.72	21.57	18.76	
3/18/2025	19.43	19.20	17.12	21.47	21.67	16.77	19.43	15.84	

Table 1. Summary of Groundwater Level Measurements at the Middletown-Junction Property.

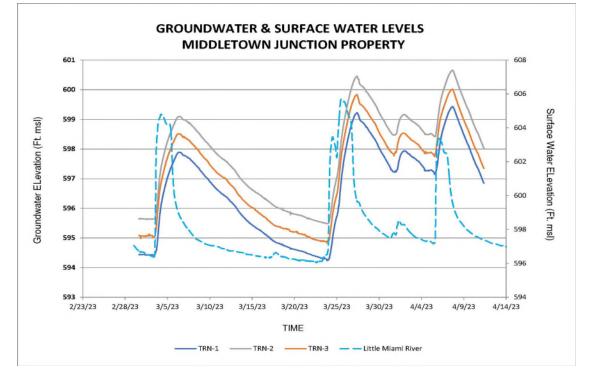


Figure 10. Groundwater level trends in monitoring wells TRN-1 to TRN-3 and Little Miami River stage elevations, March 1-April 11, 2023.

Well Testing

As required by OAC 3745-9-09(B), the aquifer and well performance at the MJ-PW3 wellsite were characterized through the conduct of a Step-Drawdown Test (SDT), a 24-hour Constant Rate Test (CRT) and a 12-hour Recovery Test (RT). These tests were successfully completed from March 10-13, 2025. Test data was used for aquifer characterization to determine the sustainable yield and potential drawdown of the well at its rated design capacity. In addition to estimates of sustainable yield and drawdown, the tests were also evaluated to determine representative values of key aquifer coefficients; transmissivity, hydraulic conductivity, storativity and diffusivity. These newly acquired well and aquifer parameters are used to update the Middletown-Junction property conceptual, analytical and numerical groundwater models. The Ohio EPA required SDT and CRT field forms are provided in Attachment #3.

Step Drawdown Test (SDT) Description

The SDT of MJ-PW3 started at 10:00 hours on March 10, 2025. Four 120-minute-long steps were completed at pumping rates of 750, 1,104, 1,525 and 1,750 gpm. MJ-PW3 was tested using a submersible test pump and portable generator. At the wellhead, a 90-degree elbow, pressure gauge and controlling gate valve were installed to regulate discharge. Also installed at the pumping well were a transducer/datalogger and fixed electronic tape to monitor water levels manually and electronically (Figure 11).

Approximately 460 feet of 8-inch flexible discharge line extended the test pump discharge away from MJ-PW3 to the southwest, connecting to a 10x7-inch orifice meter and manometer (Figure 12). Water levels in MJ-PW3 at the wellhead were monitored using both pressure transducer/datalogger and manual measurements. The transducer/data logger combination was programmed to record water level changes to a hundredth (0.01) of a foot every minute. A pressure transducer/datalogger was also installed on the discharge pipe manometer to record changes in discharge every minute (Figure 12).

Figure 13 graphically summarizes the drawdown measured in the pumping well as a function of SDT elapse time. These data are used to calculate the well performance parameters and aquifer hydraulic characteristics at and near the production well.

Figure 11. MJ-PW3 wellhead monitoring and flow control for SDT, CRT and RT.

Figure 12. SDT & CRT discharge pipe, orifice and manometer to measure discharge.

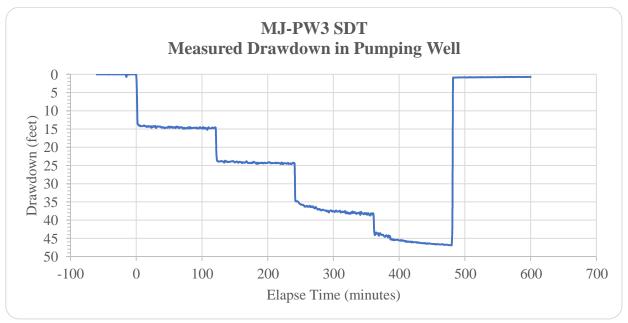


Figure 13. Graphical summary of drawdown vs. SDT elapse time at MJ-PW3.

Step Drawdown Test Results

The step test data was analyzed using various analytical techniques including those developed by Rorabaugh (1953), Kasenow (2001) and Bierschenk (1964). Analysis results are summarized in Figure 13. MJ-PW3 total in-well water level drawdown predictably decreases as pumping rates increase. This is graphically shown by the increase in the pumping well water level drawdown (Figure 14, 1st panel, dark blue line) as the discharge rate increased. Since all three of the SDT analysis methods provided virtually the same resulting total drawdown measured in the pumping well during the SDT, the various head loss components can be calculated with some certainty. This allows us to establish benchmark values for these individual head loss components of MJ-PW3 in its current condition as a newly constructed production well. These benchmark values represent the baseline or near optimal conditions to compare future well performance tests of MJ-PW3.

About 25 percent of the total drawdown in MJ-PW3 is attributed to natural flow restrictions within the aquifer and through the well filter pack. This is graphically depicted as the red line in panels 2, 3 and 4 of Figure 14. Commonly described as aquifer loss or laminar well loss, this head loss component considers the rate at which laminar flow contributes to the pumped well total drawdown. Aquifer loss is calculated using the aquifer loss coefficient "B". As determined from March 10, 2025 SDT, the benchmark B coefficient value for MJ-PW3 was measured to be 0.0138 ft./gpm.

Depending upon pumping rate, well loss or turbulent flow loss, as measured by the well loss coefficient "C", causes about 21percent of the total drawdown in MJ-PW3 (green line in panels 2, 3 and 4, Figure 14). In its current state as new construction, a production well benchmark C coefficient value for MJ-PW3 of $6.72E^{-06}$ ft./gpm² was determined from the SDT results. This qualitatively suggests the well was properly designed and developed (Walton, 1962; Bierschenk, 1964).

A third head loss component affecting total drawdown in a well is partial penetration of the well screen within the aquifer. As shown by the light blue line in panels 2, 3 and 4 of Figure 14, partial penetration effects accounted for approximately 54 percent of the total drawdown in MJ-PW3. This was anticipated. Only a portion of the aquifer was screened for this production well to minimize effects of well interference and maintain sufficient available drawdown during seasonal variations of the groundwater piezometric levels.

From March 2025 SDT data, near-well aquifer transmissivity was estimated to be about 83,100 ft²/day. Assuming an 79-foot aquifer thickness at MJ-PW3, an apparent hydraulic conductivity value 118 ft./day was calculated using the near-well transmissivity estimate (Figure 14). This K value assumes known hydraulic barrier boundaries were encountered within the short pumping duration of the SDT developing radius of influence.

A common technique to judge production well performance is to calculate the well's specific capacity at various discharge rates. Figure 15 graphically summarizes the changes in specific capacity and drawdown observed at MJ-PW3 during the March 2025 SDT.

Figure 14. Summary graphic of step-drawdown test analysis for MJ-PW3.

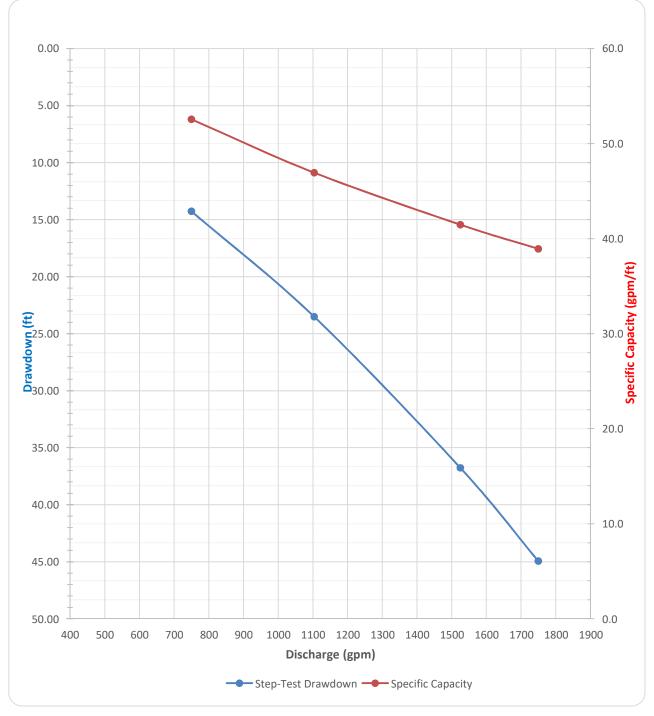


Figure 15. Changes in drawdown and specific capacity in MJ-PW3 during March 10, 2025 SDT.

Constant Rate Test Description

Beginning March 11th and concluding March 12, 2025, a 24-hour CRT and nominal 12-hour RT was completed by Terran and National Water Services at MJ-PW3. The pumping portion of the CRT began at 10:00 hours on March 11th and continued until March 12th at 10:10 hours. Discharge remained stable throughout the duration of the CRT, averaging 1,500 gpm. During the 1,450-minute pumping phase of the test, approximately 2.25 million gallons of water (2.25 MGD) were extracted.

Recording of water levels in the pumping and monitoring wells for the recovery phase of the CRT began immediately on March 12th at 10:10 hours and continued until 10:00 hours on March 13th. The aquifer water levels recovered at MJ-PW3 to 90% of the pre-pumping static water level in just a couple minutes of the pump shutdown (Figure 16). Hydraulically, MJ-PW3 response to the CRT pumping stress suggests confined aquifer conditions at this location.

Approximately 460 feet of 8-inch flexible discharge line extended the test pump discharge away from MJ-PW3 to the southwest, connecting to a 10x7-inch orifice meter and manometer (Figures 11 and 12). Water levels in MJ-PW3 at the wellhead were monitored using both pressure transducer/datalogger and manual measurements. The transducer/data logger combination was programmed to record water level changes to a hundredth (0.01) of a foot using a one-minute sampling schedule. A pressure transducer/datalogger was also installed on the discharge pipe manometer to record changes in discharge every minute (Figure 12).

Figure 16 graphically summarizes the drawdown and recovery measured in the pumping well as the function of CRT elapse time. Figure 17 is a corresponding graphical summary of discharge changes recorded at the manometer with elapse time. These data are used to calculate the well performance parameters and aquifer hydraulic characteristics at and near the production well.

In addition to collecting water level measurements manually and electronically at the pumping well, six additional locations were monitored using transducers and dataloggers: TW-1, OW-1, OW-2, MJ-PW1, TRN-3, and TRN-5. (Figure 1). Table 2 provides specific details of each monitoring location as it pertains to their use in the CRT analysis.

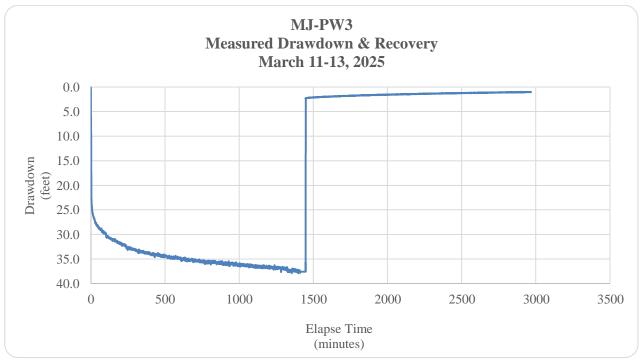
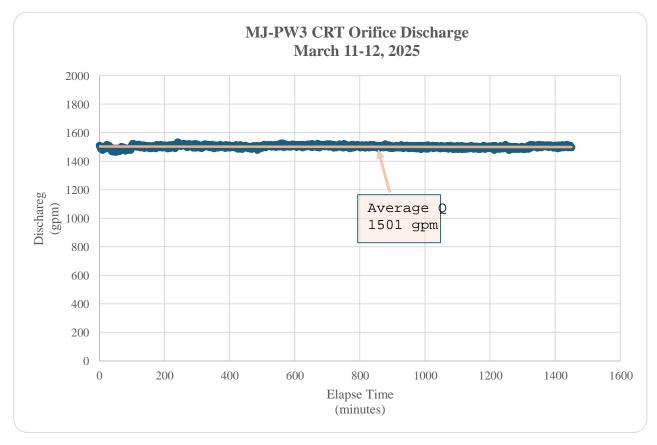
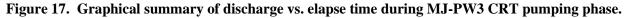




Figure 16. Graphical summary of drawdown and recovery vs. CRT elapse time at MJ-PW3.

	Location		Ground	Casing	Meas. Pt.	Screen	Screen	Distance to
Well	Northing/Y	Easting/X	Elevation	Stickup	Elevation	Diameter	Length	Pump Well
ID	(feet)	(feet)	(ft MSL)	(feet)	(ft MSL)	(inches)	(feet)	(feet)
MJ-PW1	501775	1476820	613	3.5	~616	16	20	457
MJ-PW3	501446	1476503	612	3.6	~616	16	20	0
MJ-TW2	501809	1476503	610.2	2.2	612.4	16	20	405
MJ-TW1	501658	1476750	613.1	2.5	615.6	8	20	325
MJ-OW2	501531	1476298	611	3.5	613.81	2	15	223
MJ-OW1	501282	1476876	612.4	3	619.03	2	15	408
MJ-TRN3	501427	1476458	612.7	2.8	613.79	2	20	49
MJ-TRN5	500995	1476740	612	3.0	618.45	2	20	505

Table 2. Pumping and monitoring wells utilized in March 2025 MJ-PW3 SDT & CRT.

Note: Measuring point elevations are estimated for MJ-PW1, MJ-PW3, TW-1 and TW-2.

Constant Rate Test Results

Transmissivity and storativity may be estimated using the change in drawdown as a function of the production well discharge with time and distance to an observation well. Many aquifer analysis techniques have been developed for the evaluation of time-drawdown data. For the MJ-PW3 CRT, several of these techniques were used to determine key aquifer coefficients. The computer program AQTESOLVTM was used to apply the analytical methods of Moench-Prickett (1972), Theis (1935), Cooper-Jacob (1946), Papadopulos-Cooper (1967) and others to evaluate the CRT data. A representative analysis graph is shown in Figure 18 using the drawdown data from the pumping well and the 2-inch diameter observation well OW-1 about 408 feet distal of MJ-PW3. To provide an area-weighted estimate of transmissivity, Figure 19 presents residual drawdown curves of production and monitoring wells superimposed upon MJ-PW3 recovery data. A representative estimate of apparent transmissivity from this analysis would be about 100,000 gal/day/ft (13,400 ft²/day). This value compares favorably with the CRT transmissivity and storativity values calculated using applicable analytical models for the pumped and observation wells (Table 3).

Analyses of water level data obtained during the CRT confirm the outwash aquifer in the study area behaves as a semi-confined hydrologic unit. In the vicinity of MJ-PW3 CRT and extending outward to the monitoring wells in the pumping well radius of influence, the induced flow regime appeared to start as linear moving to radial at test end. A representative apparent transmissivity value for the portion of the Middle-Junction property affected during the MJ-PW3 CRT would be \pm 13,650 ft²/day. Assuming the aquifer saturated thickness is 71 feet, a representative hydraulic conductivity would be \pm 190 ft./day (Table 2).

Storativity is the measure of the volume of water retained in or released from storage in the aquifer, expressed as a function of surface area and change in head. The smaller the value for storativity, typically the more confined the aquifer. As shown in Table 3, once the cone-of-depression(s) extends beyond the immediate area of MJ-PW3, a representative calculated late-time storage value from the CRT would be $0.022 (2.19 \times 10^{-2})$.

Groundwater Production Potential at Middletown-Junction Property

The current groundwater conceptual site model of the Middletown-Junction property suggests the underlying aquifer consists of coarse outwash materials deposited in an erosional channel bounded by shale bedrock walls (Figure 9, Terran Corp., 2022a,b). This type of aquifer formation is commonly referred to as strip, channel or buried-valley aquifer. Groundwater flow in strip aquifers is strongly influenced by boundaries, usually resulting in an unexpectedly large drawdown of groundwater levels over large distances. When developing a wellfield in a strip aquifer, the underestimation of drawdowns can result in an overestimation of sustainable yields.

To determine representative values for transmissivity (T) and hydraulic conductivity (K) of the aquifer beneath Middletown-Junction, SDTs and CRTs were completed using MJ-PW1 and MJ-PW3 as individually pumped wells while measuring water level drawdown in available monitoring wells. Depending upon the pumping rate and duration of each test, the cone of depression may or may not encounter the aquifer boundaries. If no-flow or barrier boundaries are not reached during the pumping process of a test, the calculated T and K values will be higher and drawdown less than results for tests that are affected by boundaries.

We will use current and historical pumping tests at TW-1 and TW-2 to illustrate the effects of barrier boundaries at the Middletown Junction property. In 1993, a 2-hour SDT was completed at TW-1 using 3-steps of 300, 600 and 715 gpm discharge rates. Calculated test results for T and K were 60,800 ft²/day and 822 ft./day, respectively. This SDT was followed by a 2880-minute CRT pumping at 700 gpm. Data from this test resulted in a calculated T value of 51,500 ft²/day and 757 ft./day for hydraulic conductivity. A 2023 CRT pumped TW-1 at 222 gpm for 1,560 minutes. Results for T were 50,800 ft²/day and 747 ft./day for K. It was noted that in the interpretation of these tests, the cone of depression did not extend sufficiently far to encounter significant barrier boundaries.

The geometric mean for these TW-1 pump tests results would be $54,200 \text{ ft}^2/\text{day}$ for transmissivity and 775 ft./day for hydraulic conductivity. These mean aquifer coefficient values are used to estimate the theoretical water level drawdown in TW-1 if stressed at a higher pumping rate for a longer pumping duration. Using appropriate analytical equations, if TW-1 could be pumped at 1,700 gpm for ten days, about 9.3 feet of drawdown in the pumping well would be realized in the absences of barrier boundaries.

For comparison, in 2023 a 3-hour SDT was completed at TW-2 using 3-steps of 409, 557 and 730 gpm discharge rates. Calculated test results for T and K were 56,600 ft²/day and 922 ft/day, respectively. Corrected for aquifer thickness, T and K values from the SDTs at TW-1 and TW-2 are very similar if not the same. Specific capacity for the TW-1 SDT 3^{rd} step was 268 gpd/ft compared to TW-2 SDT 3^{rd} step of 266 gpm/ft. This is to be expected since both wells are completed in the same strip aquifer spaced only 310 feet apart.

In 1994, a CRT using well TW-2 pumping at 1,700 for ten days was performed. The total drawdown in this test production well at the end of ten days pumping was 26 feet. The cause for the unusually large drawdown response appears to be barrier boundaries. The 1994 CRT sufficiently stressed the aquifer over the ten-day period to reduce the apparent or effective transmissivity from 56,600 ft²/day to 15,400 ft²/day. Effective hydraulic conductivity was lowered from about 901 ft./day to 250 ft./day (Figures 21 and 22).

The recently completed SDT and CRT at MJ-PW3 provided ample stress to the aquifer to measure the effects of barrier boundaries on water level drawdowns in the pumping and monitoring wells. Figures 14 and 24 summarize a portion of this data to determine representative T and K values throughout the aquifer when MJ-PW3 pumping stresses invoke barrier boundary effects. This information is used to update and utilize the numerical groundwater model for the Middletown-Junction property in assessing production well(s) performance along with estimating sustainable production potential.

					Hydraulic	
Pumping	Obs.	Test	Solution	Transmissivity	Conductivity	Storativit
Well	Well	Туре	Method	(ft²/day)	(ft/day) ¹	(unitless
MJ-PW3	MJ-PW3	Step-Drawdown	Theis	9,360	118	NA
MJ-PW3	MJ-PW3	Step-Drawdown	Bradbury & Rothschild	35,990	456	NA
MJ-PW3	MJ-PW3	Constant Rate	Specific Capacity	9,590	121	NA
			Geometeric Mean	14,783	187	
MJ-PW3	MJ-PW3	Constant Rate	Cooper-Jacob	8,730	123	NA
MJ-PW3	MJ-PW3	Recovery	Theis (Recovery)	23,580	332	NA
			Geometeric Mean	14,348	202	
MJ-PW3	MJ-PW1	Constant Rate	Neuman	12,100	170	2.00E-08
MJ-PW3	MJ-PW1	Constant Rate	Cooper-Jacob	14,130	199	3.67E-02
MJ-PW3	MJ-PW1	Constant Rate	Moench (Case 2)	8,290	117	2.00E-12
MJ-PW3	MJ-PW1	Recovery	Theis (Recovery)	16,100	227	NA
			Geometeric Mean	12,291	173	1.14E-07
MJ-PW3	MJ-TW1	Constant Rate	Cooper-Jacob	13,780	194	6.48E-02
MJ-PW3	MJ-TW1	Constant Rate	Moench-Prickett	12,330	174	1.03E-01
MJ-PW3	MJ-TW1	Constant Rate	Neuman	13,060	184	8.66E-02
MJ-PW3	MJ-TW1	Recovery	Theis (Recovery)	13,440	189	NA
			Geometeric Mean	13,141	185	8.33E-02
MJ-PW3	MJ-TRN3	Constant Rate	Cooper-Jacob	16,600	234	2.80E-02
MJ-PW3	MJ-TRN3	Constant Rate	Cooley-Case	16,220	228	4.27E-06
MJ-PW3	MJ-TRN3	Constant Rate	Moench (Case 2)	12,500	176	2.50E-01
			Geometeric Mean	14,986	211	3.10E-03
MJ-PW3	MJ-TRN5	Constant Rate	Cooper-Jacob	18,780	265	3.47E-02
MJ-PW3	MJ-TRN5	Constant Rate	Moench (Case 2)	9,200	130	2.17E-05
MJ-PW3	MJ-TRN5	Constant Rate	Neuman	9,030	127	5.64E-03
MJ-PW3	MJ-TRN5	Recovery	Theis (Recovery)	16,900	238	NA
			Geometeric Mean	12,743	179	1.62E-03
MJ-PW3	MJ-OW1	Constant Rate	Cooper-Jacob	16,320	230	4.73E-02
MJ-PW3	MJ-OW1	Constant Rate	Neuman	12,800	180	1.23E-02
MJ-PW3	MJ-OW1	Constant Rate	Moench-Prickett	11,200	158	7.41E-03
MJ-PW3	MJ-OW1	Recovery	Theis (Recovery)	17,130	241	NA
		-	Geometeric Mean	14,149	199	1.63E-02
MJ-PW3	MJ-OW2	Constant Rate	Cooper-Jacob	13,110	185	1.52E-01
MJ-PW3	MJ-OW2	Constant Rate	Papadopulos-Cooper	13,850	195	1.81E-01
MJ-PW3	MJ-OW2	Constant Rate	Moench (Case 2)	12,130	171	7.46E-04
MJ-PW3	MJ-OW2	Recovery	Theis (Recovery)	16,925	238	NA
			Geometeric Mean	13,895	196	2.74E-02

Notes: NA = Calculation method does not provide estimates of this variable

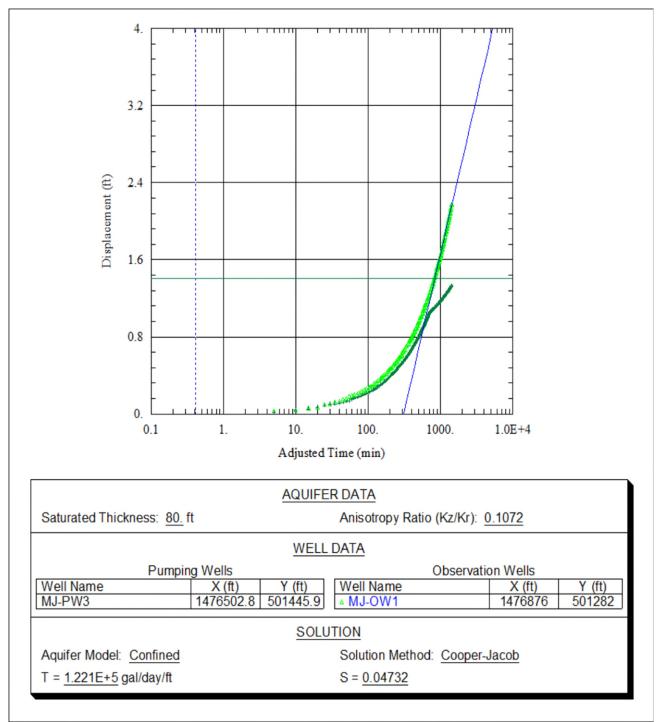


Figure 18. Example analysis hydrograph of drawdown in monitoring well MJ-OW1 for the March 2025 MJ-PW3 CRT.

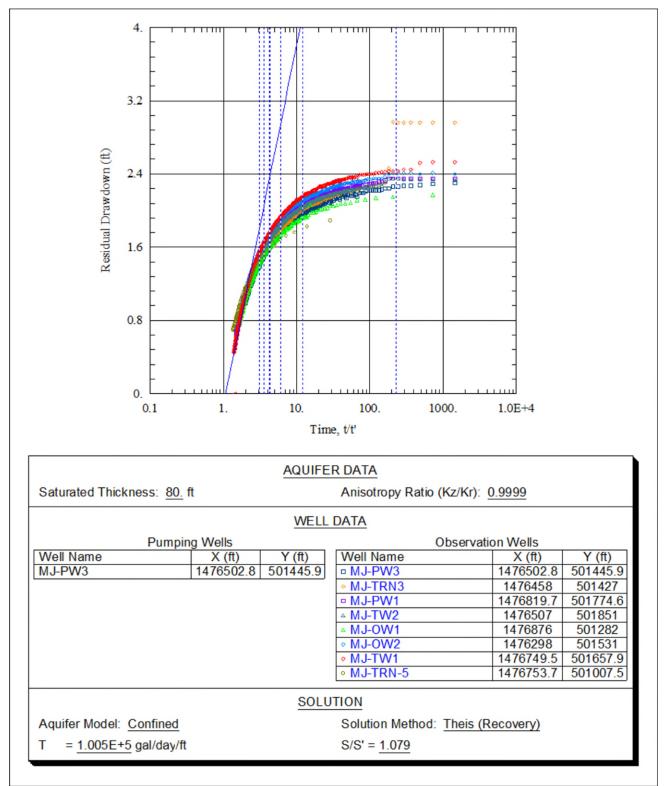
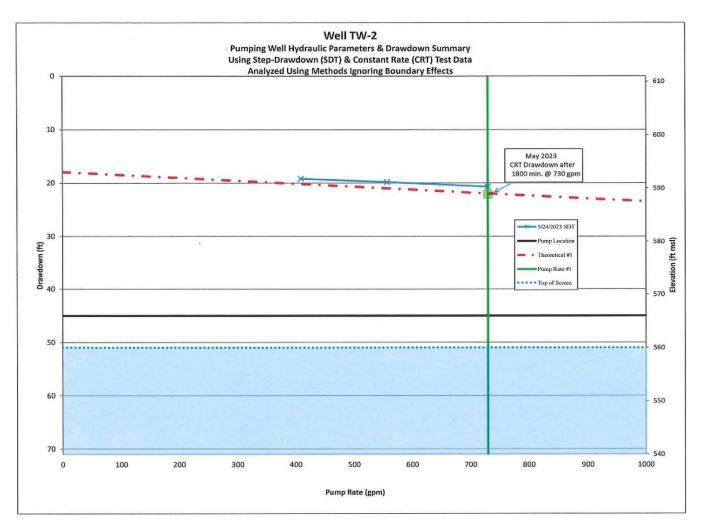



Figure 19. Composite residual recovery analysis of March 2025 MJ-PW3 CRT.

	Test	Total	Highest	SDT	SDT	Loss Coe	fficients	Near-Well A	quifer Pa	arameters		
Test Date	Analysis Type	Pumping Duration	Pumping Stress	Step Duration	Step Events	Aquifer B	Well C	т	к	S	S,	Comments
	- 31-	(minutes)	(gpm)	(minutes)	(each)	(ft/gpm)	(ft/gpm ²)	(gal/day/ft)	(ft/d)	(unitless)	(unitless)	
5/24/2023	SDT	180	730	60	3	0,0021	2.27E-06	423,000	992			B & C - four analysis methods; T & K by Theis; b=53 ft
5/24/2023	Spc. Cap.	180	730					399,600	937			Driscoll unconfined method; b=53 ft
5/25-26/2023	CRT	1800	730					380,000	958			Theis method; b=53 feet
5/25-26/2023	CRT	1800	730					376,500	950			Theis recovery method; b=53 ft.
5/25-26/2023	CRT	1800	730					383,000	966			Cooper-Jacob method; b=53 ft.
5/25-26/2023	Obs	1800	730					291,000	734		0.109	Jaeger method using TW-1; b=53 ft
5/25-26/2023	Obs	1800	730					311,800	787		0.118	Jaeger method using TRN-2; b=53 ft
5/25-26/2023	D-D	1800	730					363,500	917	0.002		Kasenow method of D-D using TW-1; b=53 ft
Existing data	analysis repre	ventative well	aquiler coeffi	clents:		0.0021	2.27E-06	363,600	901	0.002	0.113	

SDT are Step-Drawdown Tests

Notes:

Spc. Cap. are analyses techniques to calculated T & K values using Specific Capacity values CRT are Constant Rate Tests

are Distance Drawdown analyses methods D-D

are Observation well analysis methods. The pumping well being evaluated was used as an observation well during a nearby well pump or aquifer test. Obs

due to the test data not meeting the analysis method assumptions or boundaries, these values are incorrect and should not be considered representative

Figure 20. Summary graphic illustrating aquifer coefficients calculated for TW-2 ignoring boundaries.

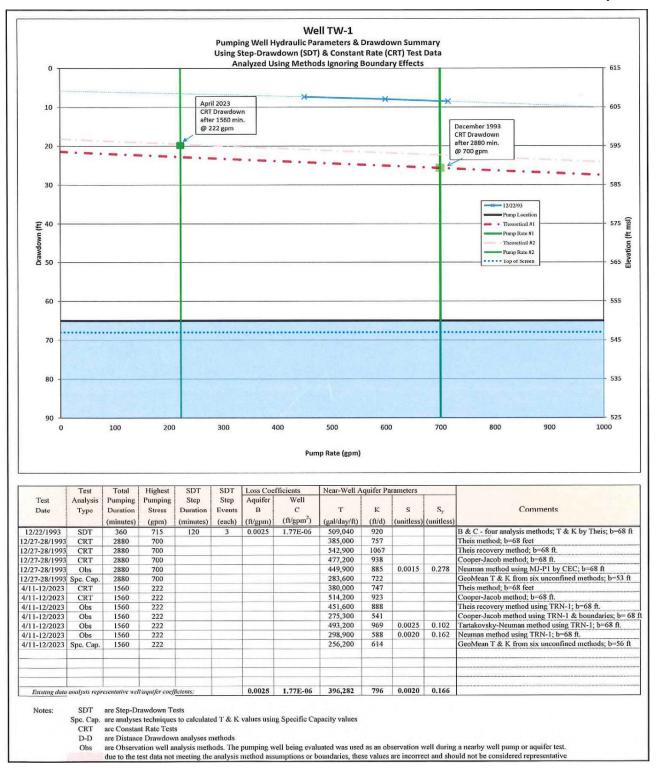


Figure 21. Summary graphic illustrating aquifer coefficients calculated for TW-1 ignoring boundaries.

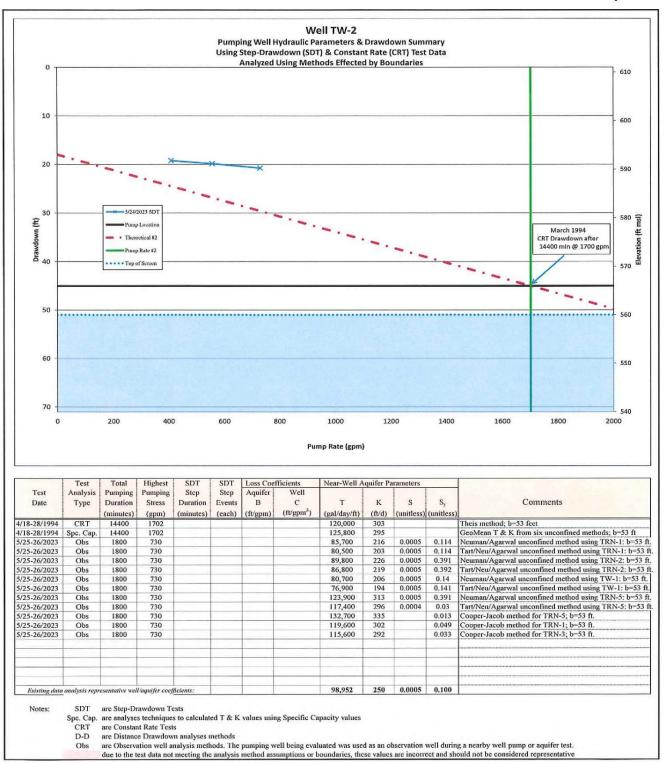


Figure 22. Summary graphic illustrating aquifer coefficients calculated for TW-2 that includes boundary effects.

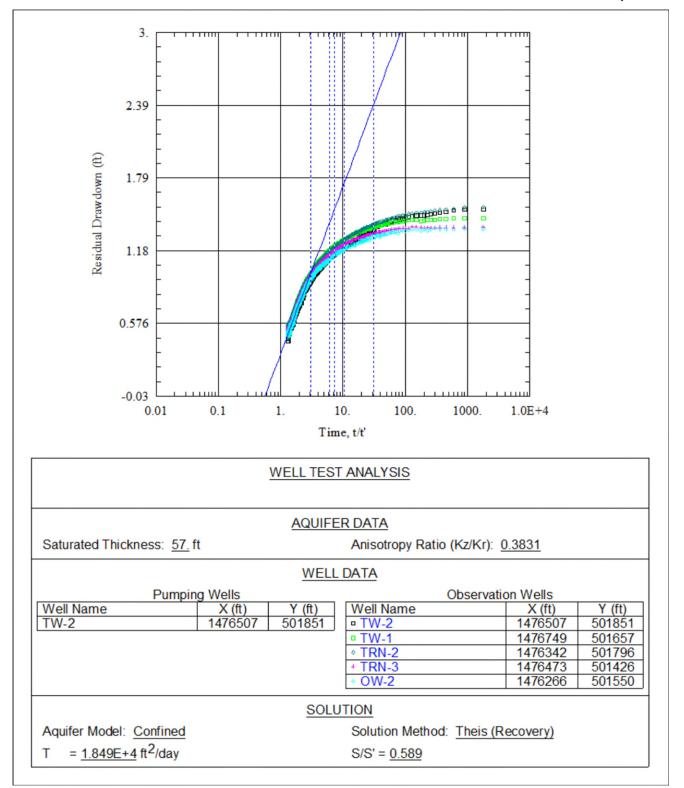


Figure 23. Monitoring well composite residual drawdown curves used in the TW-2 CRT analysis including the effects of barrier boundaries.

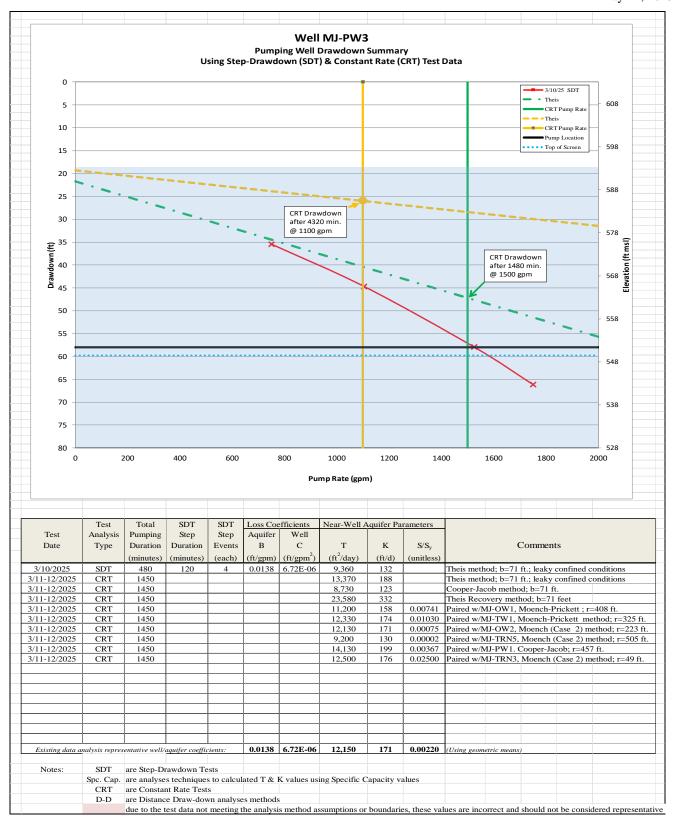


Figure 24. Summary graphic illustrating aquifer coefficients calculated for MJ-PW3 that includes boundary effects.

Groundwater Quality Results

A groundwater sample was collected from test well MJ-PW3 on March 12, 2025. The sample was collected at the conclusion of the 24-hour constant rate test from a metal sample port located off the pump casing. The lab results for a groundwater samples from test wells TW-1 and TW-2 are also provided for comparison purposes (Tables 4 and 5). A copy of the MJ-PW3 lab results is provided in Attachment #4 of this technical memorandum.

Groundwater samples from MJ-PW3 were analyzed for the water quality parameters of volatile organic compounds (VOCs), synthetic organic compounds (SOCs), total metals (Sb, As, Ba, Be, Cd, Ca, Cr, Cu, Fe, Hg, Pb, Mg, Mn, Ni, Se, Ag, Na, Tl and Zn), fluoride, chloride, total dissolved solids (TDS), alkalinity, pH, sulfate, nitrate, nitrate, cyanide and Polyfluoroalkyl Substances (PFAS) (Tables 4 and 5).

The inorganic metal constituents reported for MJ-PW3 included arsenic (0.002J), barium (0.128 mg/L), calcium (93.1 mg/L), copper (0.010J mg/L), lead (0.005J mg/L), magnesium (24.0 mg/L), manganese (0.015J mg/L), sodium (42.3 mg/L) and zinc (0.0195 mg/L). General chemistry parameters included total alkalinity (275 mg/L), chloride (91.3 mg/L), fluoride (0.20 mg/L), pH (6.0 s.u.), TDS (476 mg/L), nitrate (0.45J mg/L), nitrite (0.01J) and sulfate (49.5 mg/L) (Tables 4 and 5).

All of the reported inorganic constituents are of a natural occurrence, commonly found in soil and groundwater. Of the reported inorganic levels in MJ-PW3, none of the common constituents have exceeded their respective U.S. EPA Maximum Contaminant Levels (MCLs); however, the constituents of iron did exceed its Secondary Maximum Contaminant Level (SMCL) (Tables 4 and 5).

Organic constituents analyzed included VOCs, SOCs and PFAS constituents (Tables 4 and 5). No detectable concentrations of VOCs or SOCs were reported for MJ-PW3. The PFAS constituent of perfluorooctane sulfonate (PFOS) was reported at 0.0839 μ g/L, exceeding the MCL of 0.004 μ g/L. Two other PFAS constituents reported included Perfluorobutane sulfonate (PFBS) at 0.00209 μ g/L and Perfluorooctanoic acid (PFOA) at 0.00272 μ g/L; both PFAS constituents are reported at concentrations below federal action levels.

Two total coliform bacteria water samples were also collected, respectively at 9:45 and 10:15 a.m. at the conclusion of the MJ-PW3 24-hour CRT pump test; both sample results tested negative for total coliform (Tables 4 and 5).

PARAMETER	TW-1*	TW-2	MJ-PW3	MCL	SMCL
Inorganic Parameters	I				
Alkalinity, total (as $CaCO_3$) (mg/l)	344	311	275	NA	NA
Antimony, total (mg/l)	ND	< 0.005	< 0.003	0.006	
Arsenic, total (mg/l)	ND	< 0.010	0.002 J	0.010	
Barium, total (mg/l)	0.216	0.127	0.128	2	
Beryllium, total (mg/l)	ND	< 0.001	< 0.001	0.004	
Cadmium, total (mg/l)	0.71	< 0.002	< 0.001	0.005	
Calcium, total (mg/l)	109	114	93.1		
Chloride (mg/l)	43.3	52.1	91.3		250
Chromium, total (mg/l)	ND	< 0.005	< 0.005	0.1	
Copper, total (mg/l)	ND	< 0.005	0.010 J	1.3	1.0
Cyanide, total (mg/l)	ND	< 0.0050	0.000734 J	0.2	
Fluoride (mg/l)	ND	0.24	0.20	4	2
Iron, total (mg/l)	2.44	< 0.2	0.579		0.3
Lead, total (mg/l)	ND	< 0.005	0.0005J	0.015	
Magnesium, total (mg/l)	29.8	28.2	24.0		
Manganese, total (mg/l)	0.365	< 0.100	0.015J		0.05
Mercury, total (mg/l)	ND	NA	< 0.0005	0.002	
Nickel, total (mg/l)	ND	< 0.005	< 0.010		
Nitrate-N as NO3-N (mg/l)	ND	0.59	0.45 J	10	
Nitrite-N as NO2-N (mg/l)	ND	NA	0.01 J	1	
pH(s.u.)	7	8.1	6.0		6.5-8.5
Total Dissolved Solids (mg/l)	529	360	476		500
Selenium, total (mg/l)	ND	< 0.010	< 0.005	0.05	
Silver, total (mg/l)	ND	< 0.002	< 0.010		0.1
Sodium, total (mg/l)	20.7	28.0	42.3		
Sulfate (mg/l)	53.9	39.5	49.5		250
Thallium, total (mg/l)	ND	< 0.050	< 0.001	0.002	
Zinc, total (mg/l)	ND	< 0.160	0.0195		5
Volatile Organic Chemicals (VOCs)					
Benzene (µg/l)	ND	<1.0	< 0.5	5	
Bromobenzene ($\mu g/l$)	ND	<1.0	NA		
Bromochloromethane $(\mu g/l)$	ND	<1.0	NA		
Bromodichloromethane ($\mu g/l$)	ND	<1.0	NA		
Bromoform (µg/l)	ND	<1.0	NA		
Bromomethane (µg/l)	ND	<1.0	NA		
n-Butylbenzene (µg/l)	ND	<1.0	NA		
sec-Butylbenzene (µg/l)	ND	<1.0	NA		

Table 4. Summary of Analytical Results for Ground Water Samples from MJ-PW3 (andtest wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

* Sample results from Tetra Tech (2007)

PARAMETER	TW-1	TW-2	MJ-PW3	MCL	SMCL
Volatile Organic Chemicals (VOCs) (Contin	ued)				
tert-Butylbenzene (µg/l)	ND	<1.0	NA		
Carbon Tetrachloride ($\mu g/l$)	ND	<1.0	< 0.5	5	
Chlorobenzene (µg/l)	ND	<1.0	< 0.5	100	
<i>Chloroethane</i> $(\mu g/l)$	ND	<1.0	NA		
Chloroform $(\mu g/l)$	ND	<1.0	NA		
<i>Chloromethane</i> $(\mu g/l)$	ND	<1.0	NA		
2-Chlorotoluene (µg/l)	ND	<1.0	NA		
4-Chlorotoluene (µg/l)	ND	<1.0	NA		
Dibromochloromethane ($\mu g/l$)	ND	<1.0	NA		
Dibromomethane (µg/l)	ND	<1.0	NA		
<i>1,2-Dichlorobenzene</i> $(\mu g/l)$	ND	<1.0	< 0.5	600	
$1,3$ -Dichlorobenzene ($\mu g/l$)	ND	<1.0	NA		
$1,4$ -Dichlorobenzene ($\mu g/l$)	ND	<1.0	< 0.5	75	
Dichlorodifluoromethane ($\mu g/l$)	ND	<1.0	NA		
1,1-Dichloroethane (µg/l)	ND	<1.0	NA		
<i>1,2-Dichloroethane</i> (µg/l)	ND	<1.0	< 0.5	5	
<i>1,1-Dichloroethene (µg/l)</i>	ND	<1.0	< 0.5	7	
cis-1,2-Dichloroethene (µg/l)	ND	<1.0	< 0.5	70	
trans-1,2-Dichloroethene (µg/l)	ND	<1.0	< 0.5	100	
Dichloromethane (methylene chloride) ($\mu g/l$)	0.94	<1.0	< 0.5	5	
1,2-Dichloropropane (µg/l)	ND	<1.0	< 0.5	5	
1,3-Dichloropropane (µg/l)	ND	<1.0	NA		
2,2-Dichloropropane (µg/l)	ND	<1.0	NA		
1,1-Dichloropropene (µg/l)	ND	<1.0	NA		
1,3-Dichloropropene (cis & trans) (µg/l)	ND	<1.0	NA		
1,2-Dibromo-3-chloropropane (µg/l)	ND	<5.0	NA		
1,2-Dibromoethane (EDB) (µg/l)	ND	<1.0	NA		
Ethylbenzene (µg/l)	ND	<1.0	< 0.5	700	
<i>Fluorotrichloromethane</i> $(\mu g/l)$	ND	<1.0	NA		
Hexachlorobutadiene (µg/l)	ND	<1.0	NA		
Isopropylbenzene (µg/l)	ND	<1.0	NA		
<i>p-Isopropyltoluene</i> $(\mu g/l)$	ND	<1.0	NA		
Naphthalene (µg/l)	ND	<1.0	NA		
<i>n-Propylbenzene</i> ($\mu g/l$)	ND	<1.0	NA		
Styrene (µg/l)	ND	<1.0	< 0.5	100	
$1,1,1,2$ -Tetrachloroethane ($\mu g/l$)	ND	<1.0	NA		
1,1,2,2-Tetrachloroethane (µg/l)	ND	<1.0	NA		
Tetrachloroethene (µg/l)	ND	<1.0	< 0.5	5	
<i>Toluene</i> $(\mu g/l)$	ND	<1.0	< 0.5	1000	
$1,2,3$ -Trichlorobenzene ($\mu g/l$)	ND	<1.0	NA		

Table 4. Summary of Analytical Results for Ground Water Samples from MJ-PW3 (and testwells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

Table 4. Summary of Analytical Results for Ground Water Samples from MJ-PW3 (and test
wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

PARAMETER	TW-1	TW-2	MJ-PW3	MCL	SMCL					
Volatile Organic Chemicals (VOCs) (Continued)										
$1,2,4$ -Trichlorobenzene ($\mu g/l$)	ND	<1.0	< 0.5	70						
1,1,1-Trichloroethane (µg/l)	ND	<1.0	< 0.5	200						
<i>1,1,2-Trichloroethane</i> (µg/l)	ND	<1.0	< 0.5	5						
<i>Trichloroethylene</i> ($\mu g/l$)	ND	<1.0	< 0.5	5						
<i>1,2,3-Trichloropropane</i> ($\mu g/l$)	ND	<1.0	NA							
$1,2,4$ -Trimethylbenzene ($\mu g/l$)	ND	<1.0	NA							
$1,3,5$ -Trimethylbenzene ($\mu g/l$)	ND	<1.0	NA							
Vinyl Chloride (µg/l)	ND	<1.0	< 0.5	2						
<i>Xylenes, total ($\mu g/l$)</i>	ND	<1.0	< 0.5	10,000						

* Sample results from Tetra Tech (2007)

wens 1 vv-1 and 1 vv-2 for comparison), who decomposition reperty, Onio.										
PARAMETER	TW-1*	TW-2	MJ-PW3	MCL	SMCL					
Synthetic Organic Chemicals (SOCs)										
Alachlor (mg/l)	< 0.000020	NA	< 0.00020	0.002						
Atrazine (mg/l)	< 0.000030	NA	< 0.00030	0.003						
Simazine (mg/l)	< 0.000040	NA	< 0.00035	0.004						
Radiological Parameters	•	•		I						
Gross Alpha (pCi/L)	<3	NA	<3							
Gross Beta (pCi/L)	NA	NA	<4							
Radium-226 and Radium-228 (Combined)	3	NA	<1	5 pCi/L						
Uranium	NA	NA	NA	30 pCi/L						
Per and Polyfluoroalkyl Substances (PF.	AS)									
Perfluorooctanoic acid (PFOA) (µg/L)	NA	< 0.0044	0.00272	0.004						
Perfluorooctane sulfonate (PFOS) (µg/l)	NA	0.014	0.0839	0.004						
Perfluorononanoic acid (PFNA) (µg/L)	NA	< 0.0046	< 0.00173							
Perfluorobutane sulfonate (PFBS) (µg/L)	NA	< 0.0044	0.00209							
Perfluorohexane sulfonate (PFHxS) (µg/L)	NA	<0.0044	< 0.00173	1.0*						
Hexafluoropropylene oxide dimer acid (HFPO-DA) (μg/L)	NA	<0.0023	< 0.00173							
Biological Parameters	•									
Total Coliform	Negative	NA	Negative							
Fecal Coliform	Negative	NA	Negative							
Indicator Parameters										
Redox Potential (Eh)	NA	-206.1 mV	NA							
Dissolved Oxygen	NA	5.24 mg/L	NA							
Temperature	NA	14.62°C	NA							
Specific Conductance	NA	$820 \ ^{\mu mhos}/cm$	NA							
pH (field)	NA	6.82 s.u.	NA							
Turbidity	NA	0.30 NTU	NA							

Table 5. Summary of Analytical Results for Ground Water Samples from MJ-PW3 (and test
wells TW-1 and TW-2 for comparison), Middletown-Junction Property, Ohio.

Note: Highlighted Results exceed either MCL or SMCL levels.

- BDL Below Detection Limit
- MCL Maximum Contaminant Level

SMCL – Secondary Maximum Contaminant Level

NTU - Nephelometric Turbidity Units* Hazard Index (Unitless)

* Sample results from Tetra Tech (2007)

REFERENCES

- Bierschenk, W.H., 1964. Determining well efficiency by multiple step-drawdown tests, Proceedings of the General Assembly Berkeley, Publication 64, pp 493-507.
- Cooper, H.H., Jr. and C.E. Jacob, 1946, A Generalized Graphical Method of Evaluating Formation Constants and Summarizing Well-Field History: American Geophysical Union, V27, pp. 526-534.
- Dougherty, D.E and D.K. Babu, 1984. Flow to a partially penetrating well in a double-porosity reservoir, Water Resources Research, vol. 20, no. 8, pp. 1116-1122.
- Kasenow M, 2001. Applied Ground-Water Hydrology and Well Hydraulics: Water Resources Publications, LLC., Highlands Ranch, Colorado, USA, 831 p.
- Moench, A.F., 1985. Transient flow to a large-diameter well in an aquifer with storatitive semiconfining layers, Water Resources Research, vol. 21, no. 8 pp. 1121-1131.
- Moench, A.F. and T.A. Prickett, 1972. Radial flow in an infinite aquifer undergoing conversion from artesian to water-table conditions, Water Resources Research, vol. 8, no. 2, pp. 494-499.
- Ohio Environmental Protection Agency, 2023, Guidelines for Design of Small Public Ground Water Systems: Guidance Document prepared by the Ohio EPA, Division of Drinking and Ground Waters, June 2023, 78p.
- Papadopulos, I.S. and H.H. Cooper, 1967. Drawdown in a well of large diameter, Water Resources Research, vol. 3, pp. 241-244.
- Rorabaugh, M.I., 1953. Graphical and theoretical analysis of step-drawdown tests of artesian well, Am. Soc. Of Civil Engineers, vol. 79, No. 362, 23p.
- Terran Corporation, 2022a, Wellfield Production Analysis for the East, Revis, Sod Farm and Thompson Wellfields, Warren County, Ohio: consultant report TB-2203, May 18, 2022, prepared for the Warren County Water & Sewer Dept., 357p.
- Terran Corporation, 2022b, Technical Memorandum for Hydrogeologic Investigation, Middletown Junction Property, Warren County, Ohio: Consultant report, December 8, 2022, prepared for the Warren County Water & Sewer Dept., 72p.
- Terran Corporation, 2023, Technical Memorandum for Test Well TW-2 Evaluation, Middletown-Junction Property, Warren County, Ohio: Consultant report, August 4, 2023, prepared for the Warren County Water & Sewer Dept., 82p.
- Terran Corporation, 2024a, Technical Memorandum for F&T Modeling Evaluation of the Potential Outfall Effluent Impact, Proposed Middletown-Junction Well Field, Warren County, Ohio: Consultant report, January 22, 2024, prepared for the Warren County Water & Sewer Dept., 70p.
- Terran Corporation, 2024b, Technical Memorandum #2 for F&T Modeling Evaluation of the Potential Outfall Effluent Impact, Test Well TW-2 Utilization as Backup Production Well at the Proposed Middletown-Junction Well Field, Warren County, Ohio: Consultant report, March 6, 2024, prepared for the Warren County Water & Sewer Dept., 21p.
- Tetra Tech EM, Inc., 2007, Little Miami River Wellfield Development: Consultant Report prepared for the City of Lebanon, March 6, 2007, 18p.
- Theis, C.V., 1935, The Relation between the lowering of the Piezometric Surface and the Rate and duration of discharge of a Well using Ground-Water Storage: American Geophysical Union Transaction, Vol. 16., pp 519-524.

ATTACHMENT #1

ODNR WELL LOG AND WELL DESIGN SHOP DRAWINGS FOR PRODUCTION WELL MJ-PW03

DNR 7802.056	DNR	7802	.05e
--------------	-----	------	------

WELL LOG AND DRILLING REPORT

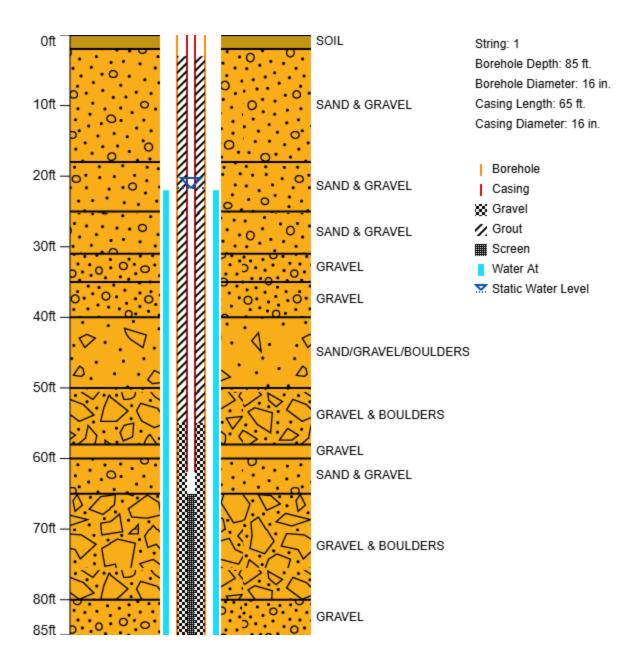
Well Log Number

Page

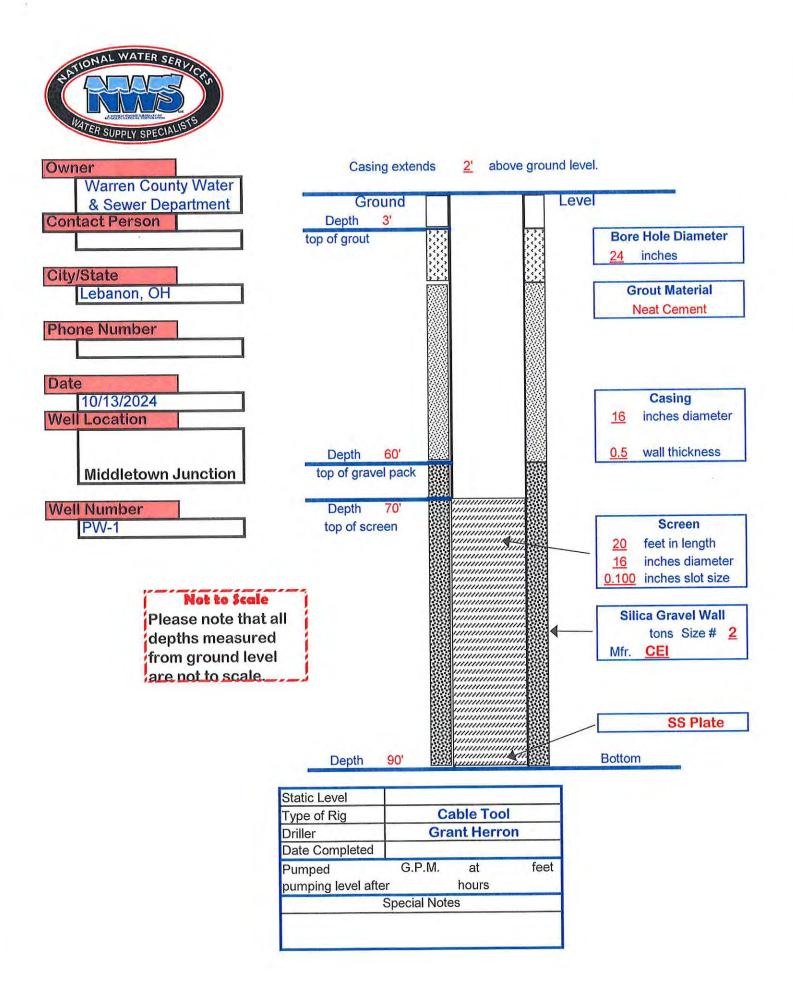
Ohio Department of Natural Resources	
Division of Geological Survey, 2045 Morse Road, Columbus,	Ohio 43229-6605

Phone (614) 265-6576

____of _____ for this record.

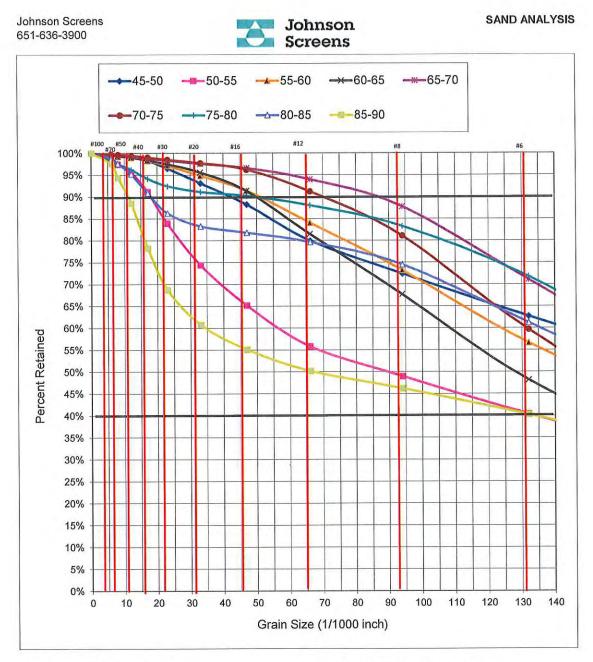

WELL LOCATION	CONSTRUCTION DETAILS
	Drilling Method:
County Township	BOREHOLE/CASING (Measured from ground surface)
	Borehole Diameterinches Depthft.
	Casing Diameterin. Length ft.Thicknessin.
Owner/Builder	2 Borehole Diameterinches Depth ft.
	Casing Diameterin. Length ft.Thicknessin.
Address of Well Location	Casing Height Above Groundft.
City Zip Code +4	∫1:
Permit No Section; and or Lot No	Type {1:
Use of Well	l 1:
	Joints {1:
	SCREEN
Coordinates of Well (Use only one of the below coordinate systems)	Diameter in. Slot Size in. Screen Length ft.
	Type Material
Latitude, Longitude Coordinates	Set Between ft. and ft.
Latitude: Longitude:	GRAVEL PACK (Filter Pack) Vol/Wt.
Elevation of Well in feet: +/ ft.	Material/ Used
Datum Plane: NAD27 NAD83 Elevation Source	Method of Installation
Source of Coordinates:	Depth: Placed From: ft. To: ft
Well location written description:	GROUT Vol/Wt.
	Material Used
	Method of Installation
	Depth: Placed From: ft. To: ft.
	DRILLING LOG*
Comments on water quality/quantity and well construction:	FORMATIONS INCLUDE DEPTH(S) AT WHICH WATER IS ENCOUNTERED.
	Color Texture Formation From To
WELL TEST *	-
Pre-Pumping Static Level ft. Date	
Measured from	
Pumping test method	
Test Rate gpm Duration of Test hrs.	
Feet of Drawdown ft. Sustainable Yield gpn)
*(Attach a copy of the pumping test record, per section 1521.05, ORC)	
Is Copy Attached? Yes No Flowing Well? Yes No	
PUMP/PITLESS	
	۹
Type of pump Capacity gpm	۱ <u> </u>
Pump set atft. Pitless Type	-
Pump installed by	4
I hereby certify the information given is accurate and correct to the best of my knowledge.	
Drilling Firm	l
Address	
City, State, Zip	
Signed Date	
	Aquifer Type (Formation producing the most water.)
ODH Registration Number Last Revised on	Date of Well Completion Total Depth of Well ft

Completion of this form is required by section 1521.05, Ohio Revised Code - file within 30 days after completion of drilling. Distribute copies of this record to Customer, and Local Health Deptartment.


WELL LOG AND DRILLING REPORT Ohio Department of Natural Resources

Ohio Department of Natural Resources Division of Water, 2045 Morse Road, Columbus, Ohio 43229-6605 Voice (614) 265-6740 Fax (614) 265-6767 Well Log Number

Page of _____ for this record.


SUBMITTAL FORM To: Terran Corporation Originator: National Water Services, LLC Attn: Kelly Smith Donnie Williams P.O. Box 230 Beavercreek, OH 45430 Paoli, IN 47454 (812) 723-2108 Engineers Contract No.: Project Name: Warren County Water & Middletown Junction Pro NWS Project No.: 8666 Submittal #: WAR-002	Sewer Department aduction Well Drilling Exception
4080 Executive Drive Beavercreek, OH 45430 (937) 320-3601 P.O. Box 230 Paoli, IN 47454 (812) 723-2108 Engineers Contract No.: Project Name: Warren County Water & Middletown Junction Pro Middletown Junction Pro NWS Project No.: 8666 Submittal #: WAR-002 _X For Approval For Information Resubmittal As Specified Qty. Drawing / Specification Section Reference Description of Item Spec Section 33.21.00 Water Supply Wells Recommended Well Design	duction Well Drilling
Beavercreek, OH 45430 (937) 320-3601 Paoli, IN 47454 (812) 723-2108 Engineers Contract No.: Project Name: Warren County Water & Middletown Junction Pro NWS Project No.: 8666 Submittal #: WAR-002	duction Well Drilling
Engineers Contract No.: Project Name: Warren County Water & Middletown Junction Provemant Stress NWS Project No.: 8666 Submittal #: WAR-002 XFor ApprovalFor Information ResubmittalXAs Specified Qty. Drawing / Specification Section Reference Description of Item Spec Section 33.21.00 Water Supply Wells Recommended Well Design	duction Well Drilling
Engineers Contract No.: Project Name: Middletown Junction Provement NWS Project No.: 8666 Submittal #: WAR-002 X For Approval For Information Resubmittal X As Specified Qty. Drawing / Specification Section Reference Description of Item Spec Section 33.21.00 Water Supply Wells Recommended Well Design	duction Well Drilling
_XFor ApprovalFor Information ResubmittalXAs Specified Qty. Drawing / Specification Section Reference Description of Item Spec Section 33.21.00 Water Supply Wells Recommended Well Design	Exception
Qty. Drawing / Specification Section Reference Description of Item Spec Section 33.21.00 Water Supply Wells Recommended Well Design Image: Spec Section 33.21.00 Water Supply Wells Recommended Well Design Image: Spec Section 33.21.00 Water Supply Wells Recommended Well Design Image: Spec Section 33.21.00 Water Supply Wells Recommended Well Design Image: Spec Section 33.21.00 Water Supply Wells Recommended Well Design Image: Spec Section 33.21.00 Water Supply Wells Image: Spec Section Sectin Sectin Section Section Sectin Section Sectin Section	Exception
Spec Section 33.21.00 Water Supply Wells Recommended Well Design	
Contractor hereby certifies that (i) Contractor has complied with the requirements of Contract Documents review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
review, and submission of designated Submittal and (ii) the Submittal is complete and in accordance with	
Documents and requirements of laws and regulations and governing agencies. Contractor: National Water Services, LLC Submitted By: Dounic Williams Senior Estimator Date: 10/13/2024	
Work may proceed Revise and resubmit - Work may proceed Subject to Incorporation of changes indicated. Revise and resubmit - Work	Review not required · Work may proceed
X	
(Please mark the box below the appropriate review and add any applicable notes in space pro	vided below.)
Notes:	

FIELD BORING LOG

Date	9/18/2024									
County	Warren Co	unty				Township				
	2 Productio					Job#	#8666			
Phone No.						Boring No.	PW-1			
Location						Foreman	Grant Herr			
Drilling Met	thods: HSA		CFA	ROTARY	_ RO	CK CORING	CAB	E TOOL	_X_	
DEPTH	, FT				1.1.1			Sample		
FROM	то		DESCRIP	ΓΙΟΝ		Туре	Depth, F	T Recovery	SPT	Blows N/6"
7	20	Tan sand	& gravel ha	rd compacted						1000
20	30		avel 1"2" g							
30	41	Pea grave	I with some	sand, mixed brow	'n					
41	51	Larger gra	y gravel wit	h cobbles up to 6'	•					
51	61	Sand & gr	avel, pea gr	avel, sand more p	rominer	nt, gravel iro	n stained			
61	71	Majority p	ea gravel, c	oarse sand. Very i	iron sta	ined, some I	arger grave	11"		
71	81	Very brow	n iron stain	ed coarse sand &	gravel r	najority pea	gravel			
81	85	Gray sand	& gravel w	ith some cobbles i	up to 6"	dirty				
85	90	Gray finer	sand mixed	I with gravel, some	e cobble	es with broke	en limeston	e chips, di	rty	
90				uld not drive past						
1										
				1						
									-	
									-	
									-	
									-	
WATER LE	VEL OBSEI	I 2VATIONS		NOTES: 24	" hase	hole				
WATER LE		VP(IIONO	the second second second	NOTED. 24	NUSC					
DURING D				PIEZOMETI	FR INST					
	ALLING			ILLEONET		YES		NO		
AT COMPL	ETION			DEPTH		120	CASING	-		
AT COMPL							- Shomo		•	
AFTER		HRS		Grou	• -		Grout Depth:			
AFTER		HRS		Installat					•	
		HRS		and the second			- NO. Days.		•	
AFTER	¥4	- 1163		GPM						

Job Name Middletown Junction PW -1 Location Warren County, OH Driller NWS Sample ID Middletown Junction PW -1 Analyzed by: Duvall, Steven Date: 10/11/2024

Casing ϕ 16 in Screen ϕ 16 in Desired Yield 1,000 GPM SWL (ft) N/A ft

Recommended Slot Size: 100 slot (0.100") screen from 70' to 90' bgs. Recommended Gravel Pack: CEI $3/16" \times #10$

Based exclusively on the samples provided by the contractor, a sieve analysis graph and suggested screen slot size is provided as requested. Since numerous construction considerations and site circumstances influence successful well completion, Johnson Screens assumes no responsibility for final well performance nor awareness of local regulations pertaining to well installations.

Prepared by:Meyer, Wayne

Send Samples to 1950 Old Highway 8, New Brighton, MN 55112

																FII RE	LE N EPO	10.: RT N	0.:			A0	6060 (3X12 0030 		
(GR/	٩T	N	S]			D	ΓS	TF	{]	B	JT	T	ON	-	TE	25	ST.	R	E	P(DF	S T	-		
100	י - נו	3 іп.	2 in. 1-1/2 in.	1	<u> </u>	'n,			01#		1#20	<u></u> #40	Con Solution		#140						11-		T			
90																										
80																										
70											******															-
EN EN																										
																						-				_
LN30 N30 HN30 HN30 HN30 HN30 HN30 HN30 HN						-													_							-
ш. 30																										
20																							_			
10																							_			
0	200 1	00			1	0.0			6		. 0				0.	1				0.0	01			1	Ĵ _{0.1}	 201
Test	1 27 +	<u>,</u> , , ,		%	GR	• AVE	ĒL			GR		SI. %S		- mr D	n			%	SI	T			7,	CI	_AY	
• 15	0.				100	0.0										0	. 0									
																									~	
e Li		F	>I		D ₉₍ 3.77			060 08		D 2.\$	50 93		D 2.(30 36	2	D ₁ 2.4		2	D ₁₍ 2.43		(0 5.0	с 95		С ₁ 1.3	
		(/ .			ERI	AL.	DES											ມອ	CS				A.A	4SH		
● Gra	vei	(3/1	Ю. X	3/32	.)	4	#	A	ω	e[P	ack	~ ~													
Proje				060×	:12												F	(ema	rks							
Proje e Loc																										
	0/1	7/04	~																							
Date:		GR/	AIN	SIZE	DI	STR	IBU.	TION	V TE	EST	RE		T 					- 1	kl -							
	SO		R]	TES	STI		G		BC	K/		UR		<u>_></u>			F	ig.	NO	.:	-					

A06060X12

Johnson Screens

WELL SCREEN SUBMITTAL DATA

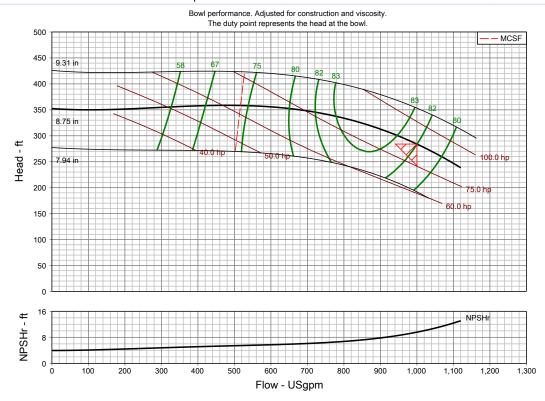
CLIENT: 250' HIQ CONSTRUCTION PROJECT:

Material		304 Stainless		
Nom Size	16	PS	410	mm
Top x Bottom Fitting Configuration	WR x WR W/	PB		
Estimated Total Well Depth	90	ft	27	meters
Estimated Feet of Screen	20	ft	6	meters
Design Slot Size	0.100	in	2.5	mm
Approx. Outside Diameter	16.10	in	409	mm
Screen Barrel Inside Diameter	15.39	in	391	mm
Approx. Clear ID at Fittings	15.06	in	382	mm
Approx. Weight Per Ft	23	lbs	11	kg
Wire Width	0.130	in	3.3	mm
Wire Height	0.250	in	6.4	mm
Calc. Collapse Strength *	76	PSI	5	kg/sq.cm
Open Area	43.5%			
Intake Area	264	sq.in./ft	5,585	sq.cm./meter
Transmitting Capacity-at 0.1 ft/sec	82	gpm/ft	17	lps/meter
Support Rod Diam	0.161	in	4.1	mm
No Rods	70			
Cross Sectional Rod Area	1.43	sq.in.	9.21	sq.cm.
Design Yield Strength	30,000	PSI	2,109	kg/sq.cm
Calc.Tensile Strength *	36,400	lbs	16,500	kg
Max.Recomended Hang Wt. *	18,200	lbs	8,300	kg
Column Load *	33,800	lbs	15,300	kg

* A broad range of site conditions and completion methods can impact the physical strength requirements (collapse, tensile, hang weight and column strengths) for a successful screen installation. Consult a Johnson Screens technical representative with questions regarding the parameters presented above as they may relate to your specific site requirements. Final design parameters should be reviewed and confirmed by the customer and his third-party consultants.

Prepared by Waterwell Sales Subject to Aqseptence Group Inc Standard Terms and Conditions. www.johnsonscreens.com/water-wells

Non Pipe	inal Size	Outside Diameter (Inch)		Nominal Wall Thickness Schedule (Inch)															
NPS	DN	OD	SCH 5s	SCH IOs	SCH 10	SCH 20	SCH 30	SCH 40s	SCH STD	SCH 40	SCH 60	SCH 80s	SCH XS	SCH 80	SCH 100	SCH 120	SCH 140	SCH 160	SCH XXS
1/8	6	0.405		1.240				0.068	0.068	0.068		0.095	0.095	0.095					
1/4	8	0.540	1	1.650				0.088	0.088	0.088		0.119	0.119	0.119					
3/8	10	0.675		1.650		1		0.091	0.091	0.091	11	0.126	0.126	0.126	1	14		1.120	S
1/2	15	0.840	0.065	2.110				0.109	0.109	0.109		0.147	0.147	0.147	1			0.188	0.294
3/4	20	1.050	0.065	2.110		-		0.113	0.113	0.113		0.154	0.154	0.154			51.1 T	0.219	0.308
1	25	1.315	0.065	2.770				0.133	0.133	0.133		0.179	0.179	0.179	-			0.250	0.358
1 1/4	32	1.660	0.065	2.770	1		-	0.140	0.140	0.140	1	0.191	0.191	0.191	1.1		1.1	0.250	0.382
1 1/2	40	1.900	0.065	2.770	1		-	0.145	0.145	0.145		0.200	0.200	0.200		1		0.281	0.400
2	50	2.375	0.065	2.770		1		0.154	0.154	0.154		0.218	0.218	0.218		-		0.344	0.436
2 1/2	65	2.875	0.083	3.050				0.203	0.203	0.203	1	0.276	0.276	0.276				0.375	0.552
3	80	3.500	0.083	3.050		1		0.216	0.216	0.216		0.300	0.300	0.300				0.438	0.600
3 1/2	90	4.000	0.083	3.050				0.226	0.226	0.226		0.318	0.318	0.318				10	
4	100	4.500	0.083	3.050	1			0.237	0.237	0.237	1.5	0.337	0.337	0.337		0.438		0.531	0.674
5	125	5.563	0.109	3.400		1		0.258	0.258	0.258		0.375	0.375	0.375	1	0.500		0.625	0.750
6	150	6.625	0.109	3.400		1	10	0.280	0.280	0.280	10	0.432	0.432	0.432		0.562		0.719	0.864
8	200	8.625	0.109	3.760		0.250	0.277	0.322	0.322	0.322	0.406	0.500	0.500	0.500	0.594	0.719	0.812	0.906	0.875
10	250	10.750	0.134	4.190		0.250	0.307	0.365	0.365	0.365	0.500	0.500	0.500	0.594	0.719	0.844	1.000	1.125	1.000
12	300	12.750	0.156	4.570		0.250	0.330	0.375	0.375	0.406	0.562	0.500	0.500	0.688	0.844	1.000	1.125	1.312	1.000
14	350	14.000	0.156	4.780	0.250	0.312	0.375	-	0.375	0.438	0.594		0.500	0.750	0.938	1.094	1.250	1.406	
16	400	16.000	0.165	4.780	0.250	0.312	0.375		0.375	0.500	0.656		0.500	0.844	1.031	1.219	1.438	1.594	
18	450	18.000	0.165	4.780	0.250	0.312	0.438		0.375	0.562	0.750		0.500	0.938	1.156	1.375	1.562	1.781	
20	500	20.000	0.188	5.540	0.250	0.375	0.500		0.375	0.594	0.812		0.500	1.031	1.281	1.500	1.750	1.969	
22	1	22.000	0.188	5.540	0.250	0.375	0.500		0.375		0.875		0.500	1.125	1.375	1.625	1.875	2.125	
24	600	24.000	0.218	6.350	0.250	0.375	0.562		0.375	0.688	0.969		0.500	1.219	1.531	1.812	2.062	2.344	
26		26.000			0.312	0.500	0.000		0.375		P	1 16	0.500		-	1			
28	700	28.000			0.312	0.500	0.625		0.375				0.500						
30		30.000	0.250	7.920	0.312	0.500	0.625		0.375	1		1 11	0.500				12.		
32	800	32.000			0.312	0.500	0.625		0.375	0.688			0.500						
34		34.000	1		0.312	0.500	0.625		0.375	0.688	8		0.500						
36	900	36.000			0.312	0.500	0.625		0.375	0.750		1	0.500						
38		38.000				her.			0.375				0.500						
40	1000	40.000						0.375											
42		42.000	i - W			Tab .			0.375				0.500						-
44	1100	44.000							0.375		1	1	0.500						
46		46.000	5						0.375		1		0.500	1.7	- 11	1.20	Q	1	
48	1200	48.000		1			-		0.375	1		0.500						1	


ATTACHMENT #2

MW-PW03 SUBMERSIBLE PUMP PERFORMANCE SHOP DRAWINGS DOCUMENTS

Pump Performance Datasheet American-Marsh Pumps Quotation System 24.6.5

Item number	: 001	Size	: 12KC
Service	:	Stages	:5
Quantity	: 1	Based on curve number	: 12KC
Quote number	: 2501008	Basic model number	:-
		Date last saved	: 26 Mar 2025 1:19 PM
Operating Conditions		Liquid	
Flow, rated	: 1,000.0 USgpm	Liquid type	: Water
Differential head / pressure, rated (reque	sted) : 284.0 ft	Additional liquid description	:
Differential head / pressure, rated (actua	: 288.7 ft	Solids diameter, max	: 0.00 in
Suction pressure, rated / max	: 0.00 / 0.00 psi.g	Solids concentration, by volume	: 0.00 %
NPSH available, rated	: Ample	Temperature, max	: 68.00 deg F
Site Supply Frequency	: 60 Hz	Fluid density, rated / max	: 1.000 / 1.000 SG
Performance		Viscosity, rated	: 1.00 cP
Speed criteria	: Synchronous	Vapor pressure, rated	: 0.34 psi.a
Speed, rated	: 1750 rpm	Material	
Impeller diameter, rated	: 8.75 in	Material selected	: Cast iron - Standard
Impeller diameter, maximum	: 9.31 in	Pressure Data	
Impeller diameter, minimum	: 7.94 in	Maximum working pressure	: See the Additional Data page
Efficiency (bowl / pump)	: 82.01 / 80.60 %	Maximum allowable working press	ure : See the Additional Data page
PEI (CL)	:-	Maximum allowable suction pressu	ure : N/A
NPSH required / margin required	: 9.59 / 0.50 ft	Hydrostatic test pressure	: See the Additional Data page
Ns (total flow) / Nss (imp. eye flow)	: 2,012 / 11,358 US Units	Driver & Power Data (@Max den	sity)
MCSF	: 516.7 USgpm	Driver sizing specification	: Maximum power
Head, maximum, rated diameter	: 358.6 ft	Margin over specification	: 0.00 %
Head rise to shutoff (bowl / pump)	: 24.09 / 25.89 %	Service factor	: 1.15
Flow, best eff. point (bowl / pump)	: 862.9 / 848.7 USgpm	Power, hydraulic	: 71.70 hp
Flow ratio, rated / BEP (bowl / pump)	: 115.88 / 117.82 %	Power (bowl / pump)	: 87.43 / 87.68 hp
Diameter ratio (rated / max)	: 93.95 %	Power, maximum, rated diameter	: 87.90 hp
Head ratio (rated dia / max dia)	: 80.39 %	Minimum recommended motor rati	•
Cq/Ch/Ce/Cn [ANSI/HI 9.6.7-2010]	: 1.00 / 1.00 / 1.00 / 1.00		
Selection status	: Acceptable		

Item number :	001	Size	: 12	2KC	
Service :		Stages	: 5		
Quantity :	1	Speed, rated	: 11	750 rpm	
Quote number :	2501008	Intellicode	:	·	
		Date last saved	: 20	6 Mar 2025 1:19 PN	1
Performance Data		Stage, Speed and	d Solids Limits		
Head, maximum diameter, rated flow	: 353.3 ft	Stages, maximum	າ	: 22	
Head, minimum diameter, rated flow	: 191.9 ft	Stages, minimum		: 1	
Head, maximum, rated diameter	: 358.6 ft	Pump speed limit,	, maximum	: 3000	rpm
Efficiency adjustment factor, total	: 1.00	Pump speed limit,		: 800 r	om
Power adjustment, total	: 0.00 hp	Curve speed limit	, maximum	: 3000	rpm
Head adjustment factor, total	: 1.00	Curve speed limit	, minimum	: 300 r	om
Flow adjustment factor, total	: 1.00	Variable speed lin	nit, maximum	:-	
NPSHR adjustment factor, total	: 1.00	Variable speed lin		: 100 r	om
User applied performance adjustment	:	Solids diameter lir	-	: 0.63 i	
comments		Energy Indexes			
NPSH margin dictated by pump supplier	: 0.50 ft	Bare pump model	I number	: 12KC	
NPSH margin dictated by user	: 0.00 ft	Basic model numl	ber	:-	
NPSH margin used (added to 'required' val	ues) : 0.50 ft	PEI CL/VL		: - / -	
Mechanical Limits		ER CL/VL		: - / -	
Torque, rated power, rated speed	: 5.01 hp/100 rpm	Typical Driver Da	ata		
Torque, maximum power, rated speed	: 5.02 hp/100 rpm	Driver speed, full	load	: 1780	rpm
Torque, driver power, full load speed	: 5.62 hp/100 rpm	Driver speed, rate	ed load	: 1782	rpm
Torque, driver power, rated speed	: 5.62 hp/100 rpm	Driver efficiency,		: N/A	
Torque, pump shaft limit	: 18.14 hp/100 rpm	Driver efficiency,		: N/A	
Radial load, worst case	:-	Driver efficiency,		: N/A	
Radial load limit	:-				
Impeller peripheral speed, rated	:-				
Impeller peripheral speed limit	:-				
Various Performance Data	Flow (USgpm)	Head (ft) E	fficiency (%)	NPSHr (ft)	Power (hp)
Shutoff, rated	0.00	352.4	-	-	34.02
Shutoff, maximum	0.00	425.9	-	-	46.27
MCSF	516.7	358.3	73.79	5.47	63.35
Rated flow, minimum	1,000.0	191.9	79.66	-	60.82
Rated flow, maximum	1,000.0	353.3	82.90	-	108
BEP flow, rated	862.9	321.5	83.56	7.35	83.83
120% rated flow, rated	1,200.0	201.2	73.20	16.55	83.28
End of curve, rated	1,120.1	238.4	77.80	13.09	86.65
End of curve, minimum	1,034.1	179.2	78.06	0.00	59.92
End of curve, maximum	1,163.4	295.1	77.79	14.84	111
Maximum value, rated	-	358.6	83.56	-	87.90
Maximum value, maximum	-	-	83.94	-	111
System differential pressure		@ Dens	sity, rated	@ Dens	sity, max
Differential pressure, rated flow, rated (psi)		12	22.9	12	2.9
Differential pressure, shutoff, rated (psi)		15	52.5	15	2.5
Differential pressure, shutoff, maximum (ps	i)	18	34.3	18	4.3
		@ Suction	@ Suction pressure, max	@ Suction pressure, rated	@ Suction pressure, ma
Discharge pressure		nrecente raten	prosoure, max	prossure, rateu	Prossure, 111a
)	pressure, rated	122 9	122 9	122 9
Discharge pressure, rated flow, rated (psi.g)	122.9	122.9	122.9 152.5	122.9 152.5
Discharge pressure, rated flow, rated (psi.g Discharge pressure, shutoff, rated (psi.g)		122.9 152.5	152.5	152.5	152.5
Discharge pressure, rated flow, rated (psi.g		122.9			

Pump Performance - Additional Data American-Marsh Pumps Quotation System 24.6.5

Mixed Stage Performa	nce Set #	ŧ1	Set #2	Set #3	Set #4	Alternate First Stage
Size		12KC	-	-	-	-
Stages		5	-	-	-	-
Based on curve numbe	r	12KC	-	-	-	-
Impeller diameter, rated	I	8.75 in	-	-	-	-
Impeller diameter, maxi	mum	9.31 in	-	-	-	-
Impeller diameter, minir	num	7.94 in	-	-	-	-
Head and Power Loss	es			Dimensions		
Friction loss rate, colum	in	: 6.15 %		Minimum clearance be	elow suction bell lip/case	: 0.00 in
Friction loss, column		: 1.23 ft		Minimum well diamete	er	: 0.00 in
Friction loss, discharge	head	: 2.40 ft		Suction nozzle center	line height	:-
Friction loss, can/barrel		:-		Bowl assembly length	, first stage	: 23.06 in
Friction loss, suction be	ll and strainer	: 0.00 ft		Bowl assembly length	-	: 10.00 in
Friction loss, bowl/colur		: 0.43 ft		Bowl assembly length		: 63.06 in
Friction loss, total	•	: 4.06 ft		Suction bearing hub le		: 0.00 in
Power loss, lineshaft be	arings	:-		Strainer length		: 0.00 in
Power loss, thrust beari	•	: 0.26 hp	1	Bowl to column adapte	or length	: 0.00 in
Power loss, total	119	: 0.26 hp		Discharge head stick-	•	: 0.28 in
Bowl vs. Pump Perfor	mance	. 0.20 hp		Submersible motor ad		: 17.00 in
Head (bowl / pump)	mance	· 284.0 ft	/ 279.9 ft	Submersible motor ler		: 70.00 in
Efficiency (bowl / pump)	N N		6 / 80.60 %	Column length	igui	: 20.00 ft
• • • •)			Total pump length		: 32.53 ft
Power (bowl / pump)	to go impollar ava		p / 87.68 hp	1 1 0		
NPSH required at first s		: 9.59 ft		Can / barrel length	amatar	:-
Weights and Down Th	rusi			Stuffing box sleeve dia	ameter	:-
Weight, lineshaft		:-		Suction bell diameter	to provent vertexing	: 30.00 in
Weight, bowl assembly	rotating element	: 111.7		•	e to prevent vortexing	
Thrust factor	<i>(</i>)	: 6.50 lb/		Actual submergence (: 390 in
Thrust, hydraulic (rated	,	-	/ 2,326.8 lbf	Discharge head heigh		: 26.00 in
Thrust, bowl shaft end (,	: 0.00 / 0		Discharge nozzle cent	•	: 9.00 in
Thrust, shaft step (rated	,	: 0.00 / 0	.00 lbf	Min distance discharg suction bell	e nozzie centerline to	: 0.00
Thrust, stuffing box slee	, ,	: - / -				
Thrust, total (rated / ma	x)		/ 2,438.4 lbf	Lineshaft length		:- :1.60 in
Thrust Limit		:-		Bowl shaft diameter	2	: 1.69 in
* Rated thrust @ rated head, density * Max thrust @ max head, density, a				Bowl diameter, outside	U	: 11.50 in
Pressure Data	Maximum	Maximum	Hydrostatic test	Bowl diameter, exit		: 8.16 in
	working	allowable	pressure (psi.g)	Column diameter, insi		: 6.07 in
	pressure (psi.g)			Column internal obstru		:-
		pressure (psi.g)		Can/barrel diameter, i		:-
Bowl	155.2	263.0	394.5	Can/barrel obstruction	alameter	
Column	155.2	1,200.0	-	NPSH		A 1 / 0 =0 4
Discharge head	155.2	275.0	-	NPSH at bowl (availab		: Ample / 9.59 ft
Can/Barrel	-	-	-		vel (available / required)	: Ample / -
Torque Limits					e (available / required)	: - / -
Torque, lineshaft limit		: -		Liquid Velocities		
				Column liquid velocity		: 11.09 ft/s
				Discharge head liquid	velocity	: 11.35 ft/s
				Can liquid velocity		:-
				Suction nozzle liquid		:-

Customer : National Water Service Reference :

Additional Design Conditions			
NSF/ANSI/CAN 61 & 372 Certification	: NO	Pump Length Definition	: Column length (Setting)
Required		Length Value	: 20.00 ft
Pump Design	: Submersible	Well Inside Diameter	: in
Impeller Type	: Enclosed Impeller	Pumping Level (From Bottom of Head to	: ft
Driver Type	: Submersible Motor	Liquid)	
Head Measurement Location	: Top of bowl	NPSH Measurement Location	: Bowl
Bowl Options			
Impeller Fastener	: Collet	Bowl Suction Connection Size	: Submersible
Bowl Shaft Material	: 416ss	Bowl Suction Type	: Submersible
Bolting	: Standard Bolting	Submersible Motor Adaptor Size	: 10" Motor Bracket
Bowl Discharge Type	: Threaded		
Column Options			
Column Diameter	: 6 inch	Column Type	: Threaded
Discharge Head Options			
Discharge Head Type	: Fabricated Steel	Discharge Head Flange Rating	: Class 150
Larger Head Diameter Required	: No	Discharge Head Column Connection	: Threaded
Discharge Head Size	: 6" Discharge		

GENERAL ARRANGEMENT DRAWINGS

	GENERAL ARRANGEMENT D		
		Vertical Turbine Pump	
E DIA MAX	DISCHARGE HEAD	480 SERIES VT	
(WITH CABLE GUARD)		Submersible Pump	
		GE	ENERAL DATA
H-8 NPT	2	FLOW 1,000.0 USgpm	HEAD 284.0 ft
	Not Required	LIQUID Water	SG 1.000 SG
	a aduli -	LIQUID TEMP 68.00 deg F	VISCOSITY 1.00 cP
	+ Ren	F	PUMP DATA
	Nor	BOWL MODEL 12KC	STAGES 5
		BOWL SFT DIA 1.69 in	LINESHAFT DIA
		IMPELLER CONN. TYPE Collet	COLUMN SIZE 6.00 in
(MIN)		COLUMN CONN. TYPE Threaded	COL WALL / COL SCH 0.28 in
	FOUNDATION PLATE	TOTAL RATED THRUST 1,954.5 lbf	
		MECHA	NICAL SEAL DATA
F DIA		MFGR	TYPE -
		SIZE -	API CODE -
	d	PUMP	MATERIAL DATA
	Not Required	BOWL Cast Iron	IMPELLER Standard
	Requ	BOWL WR None	IMP WR None
	NOCI	BOWL SHAFT 416 SS	LINESHAFT -
	(4-	STRAINER 300 SS	COL PIPE Steel
		DISCHARGE HEAD Steel	COL CPLG Steel
			-
	STRAINER DETAIL	MFR	
	OTTAINER DETAIL	HP -	
			ROTATION -
C C	4	TYPE Solid Shaft	ENCLOSURE -
	ireu		WEIGHTS
	Dequi	EST. PUMP WT. 735.0 lb	
	and Ko	CERTIF	ICATION CONTENT
	Not Required	CUSTOMER	National Water Service
	-	SERVICE	
		ITEM NUMBER	001
╡ <u></u>		P.O. NUMBER	
		QUOTE NO.	2501008
G DIA	All Dimensions Are In inches ± 0.38 in Not For Construction Unless Certified By Engineering	DATE	26 Mar 2025 1:07 PM
0.000	Drawings Represent General Construction	CERTIFIED FOR	
A B C D E F G H	JKLMNPR	CERTIFIED BY	
149.7 80.06 69.68 30.00 11.44 11.25 8.52 6"			WARNING
			OUT PROTECTIVE GUARD IN PLACE. ANY OPERATION
S H2 H3 H4 H5 F1 F2 F3	F4 P1 P2 P3 P4 S1 S2		E GUARD CAN RESULT IN SEVERE BODILY INJURY
		Vertical Tur	bine - 12KC - 5 Stage
L		•	

PLEUGER

Submersible Motors Ranges 6" - 16"

60 Hz

Highest Reliability & Durability Energy Efficiencies up to

Table of Content

About PLEUGER	1	
PLEUGER Submersible Motors Key Features	2	
PLEUGER PMM Motors Features and Benefits	3	
PLEUGER Technologies: Thrust Bearings, VPI, Motor Cooling	5	
6 – 16" Motor Range for Low Voltages at SF 1.0	6	
6 – 16" Motor Range for Low Voltages at SF 1.15	7	
14 – 16" Motor Range for Medium Voltages	8	
M6-2 Motor measures & specifications	9	
M8-2 Motor measures & specifications	10	
M8-4 Motor measures & specifications	11	
MI10-2 Motor measures & specifications	12	
MI10-4 Motor measures & specifications	13	
VNI12-2 Motor measures & specifications	14	
VNI12-4 Motor measures & specifications	15	
VNI14-2 Motors measures & specifications	16	
VNI14-4 Motor measures & specifications	17	
MI16-4 Motor measures & specifications	18	
PLEUGER Technologies: Motor Sensors	19	
Hot water applications & Special Motors	20	
PLEUGER Technologies: External Motor cooling	21	
Pump Installation Options	22	

About PLEUGER

PLEUGER is an international manufacturer and supplier of submersible motors, pumps, thrusters and plunger pumps and related services with headquarters in Hamburg, Germany. Renowned worldwide across the energy, mining, water, industrial processing and the oil & gas industries for absolute reliability and outstanding longevity, our products are designed, engineered and manufactured to solve some of the toughest applications in the most challenging and harshest environments. With over 90 years experience we are experts in electric submersible motors and pumps for various applications in the Water and General Industry, including Mining and Oil & Gas market sector. With German engineering know-how and many years of industry experience, PLEUGER meets the demands of customers worldwide for performance, durability, energy efficiency and total cost of ownership.

PLEUGER CRAFTSMANSHIP

PLEUGER stands for true craftsmanship, combining vision, precision and attention to detail.

From our unique manufacturing processes for stators, to our unrivalled winding capabilities for submersible motors, each element is part of our journey to absolute perfection.

Nothing is more important to us than the reliability and durability of our products.

DESIGN & ENGINEERING

PLEUGER believes in total reliability and the very best quality. We achieve this through precision design and engineering. Proven throughout our decades of experience in consulting, engineering and manufacturing for the most demanding applications around the world.

We offer you the best fit for your submersible pump solution. Engineered for performance. Built to last.

TECHNOLOGIES

Our design engineers, production engineers and data analysts are always investigating how new technologies, materials and approaches can enhance what we do, to maximise performance and reliability and minimize energy consumption.

PLEUGER submersible pump units keep critical systems running across the world in energy, drinking water, industrial processes, dewatering and geothermal heating applications.

PLEUGER SUBMERSIBLE PUMPS

Best-in-class submersible pumps built for reliability and performance.

PLEUGER Motors/

PLEUGER Submersible Motors — Made in Germany

As a manufacturer of world-class submersible motors, every PLEUGER product is designed, engineered and manufactured to the highest standards for efficiency, corrosion protection, and an extended power range.

Standard Motors

- 6" to 50"
- Induction motor, Asynchronous motor
- Power output: 5.5 kW to 5 MW (7.4 HP to 6,705 HP)
- Operating speed: 200 to 3600 rpm 2,4,6,8 pole designs
- 200 V to 6.6 kV / 50 and 60 Hz

PMM Motors

- 6" to 8"
- Synchronous motor
- Power output: 4.0 to 165 kW (5.36 to 221 HP), 200 kW (268 HP) on request
- Operating speed: 2100 to 3600 rpm (max 3800 rpm)
 4 pole design
- Driven by Variable Frequency Drive (VFD)
- VFD input voltage 400 to 500 V / 70 and 120 Hz

Key Features

- Water-filled motors as standard
- Oil-filled motors on request
- Rewindable
- Operating temperatures: -20°C to +50°C / -4°F to +122°F, on request -30°C to +85°C / +22°F to +185°F
- Suitable for VFD operation

International Design Standards

Design Standards: ANSI / ASTM / DIN / ISO / Hydraulic Institute / CE / API 610

Hydraulic Standards: ANSI/HI / EN ISO / API610 / NFPA20

Electrical Standards: NEMA / IEC / IEEE

Certifications: DNV GL / ABS / CSA / ATEX/ NSF61

Approvals: ISO 9001

Significant savings in energy costs

High-performance pumps with increased efficiency of up to 85% (average η opt > 83%) available

PLEUGER Motors/

PLEUGER PMM Motors

Our engineers and analysts are always investigating how new technologies, materials and approaches can enhance what we do, to maximise performance and reliability and minimize energy consumption.

PLEUGER PMM motors are rewindable, synchronous electric motors with significant Increase of Motor Efficiency (up to 95%) and Power Output.

Available from 4 kW (5.4 HP) to 165 kW (to 221 HP), 200 kW (268 HP) on request with efficiencies up to 94%

- Designed to minimize life cycle costs
- Design based on the reliable PLEUGER asynchronous / induction motor
- Operated via variable frequency drive (VFD) ensures most efficient operation
- PLEUGER offers the complete system of pump, motor and VFD

PLEUGER PMM Motors

Designed for increased performance and reduced life-cycle costs.

Features and Benefits

- Up to 14 percent points better efficiency than asynchronous motors
- Increased power output of more than 100%, motors allow smaller unit sizes with reduced installation costs
- Wide efficiency curves drastically reduce number of motor sizes and simplify storage
- No special VFD required; standard VFDs from various manufacturers can be used
- No sinus filter or du/dt filter required, reduce investment and energy cost

Power Output [kW / hp]

Motor Type	Power Output * kW (HP)	Current * A	Efficiency * %	Cos Phi *	Length, L mm (inch)	Diameter, D mm (inch)	Weight kg (lb)	Maximum Pe Thrust kl	
	KW (III)	~	/0				kg (ib)	Down	Up
	4.0 (5.4)	8.2	87.0%	0.995					
	5.5 (7.4)	11.0	89.0%	0.990					
PMM6-160-4	9.2 (12.3)	17.9	91.0%	0.975	696 (27.40)	144 (5.669)	46 (101)	27.5 (6100)	6 (1250)
F WIWO-100-4	11.0 (14.3)	21.5	91.5%	0.965	090 (27.40)	144 (5.009)	40 (101)	27.5 (0100)	6 (1350)
	13.0 (17.4)	25.5	91.0%	0.955					
	15.0 (20.1)	29.0	91.0%	0.940					
	15.0 (20.1)	28.5	92.5%	0.990					
	18.5 (24.8)	35.0	93.0%	0.985					
	22.0 (29.5)	41.5	93.5%	0.975					
PMM6-320-4	26.0 (34.9)	48.5	93.5%	0.970	050 (00 70)	144 (5 000)	CA (1.41)	27.5 (6100)	6 (1350)
PIVIIVI0-320-4	30.0 (40.2)	57.0	93.0%	0.960	856 (33.70)	144 (5.669)	64 (141)	27.5 (0100)	0 (1350)
	33.0 (44.3)	63.0	93.0%	0.950					
	37.0 (49.6)	71.0	92.5%	0.935					
	40.0 (53.6)	77.0	92.5%	0.925					
	40.0 (53.6)	79.0	94.5%	0.980					
	46.0 (61.7)	92.0	94.5%	0.970					
	50.0 (67.1)	100.0	94.5%	0.965	1100				
PMM6-600-4	55.0 (73.8)	110.0	94.5%	0.960	1136	144 (5.669)	101 (223)	27.5 (6100)	6 (1350)
	60.0 (80.5)	121.0	94.5%	0.950	(44.72)				
	68.0 (91.2)	137.0	94.5%	0.935					
	75.0 (100.6)	153.0	94.0%	0.920	1				
	75.0 (100.6)	140.0	93.5%	0.985					
	83.0 (111.3)	153.0	94.0%	0.985					
	90.0 (120.7)	166.0	94.0%	0.985	1				
	110.0 (147.5)	205.0	94.0%	0.975	1438	100 (7.000)	470 (005)	40.0	12.5
PMM8-610-4	140.0 (187.7)	260.0	94.0%	0.960	(56.61)	186 (7.323)	179 (395)	(9000)***	(2800)
	165.0 (221.0)	285.0	93.0%	0.940				. ,	. ,
]				
	**								

* at 120 Hz and 3600 rpm, max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, at Service Factor 1.0 ** up to 200.0 (268) on request, *** max downthrust capacity 80KN/17,985 lbf on request

PLEUGER Motors/ PLEUGER Standard and PMM Motors

Flat- or round cable

Space-saving cable design. Certified for drinking water applications.

NEMA or IEC flange connection

Universal connector to standard hydraulics.

Motor housing

Cast housing designed for reliability, corrosion resistance, strength and durability.

Induction Motor: Squirrel Cage Rotor for Asynchronous Motor or Permanent Magnet Motor: Rotor equipped with Permanent Magnets for

Synchronous Motor

- Up to 14 % points higher motor efficiency compared to asynchronous motors, through reduction in copper loss
- Hermetically sealed rotor ensures protection of magnets against corrosion and mechanical damage
- Up to 200 kW (268 HP) available

Rewindable winding

Ease of maintenance and cost saving. PE or PE2 insulation.

PE2+PA insulation for optimized winding lifetime.

Breather diaphragm

Liquid pressure compensation to extend the service life of the mechanical seal and O-ring.

Signal Cable (Optional)

Used with temperature sensor PT100 For monitoring motor temperature.

Motor Shaft End

Standard duplex stainless steel for best combination of corrosion resistance, mechanical strength and stiffness. Special materials available upon request.

Mechanical Seal

High-grade SIC/SIC/Viton® as standard ensures wear resistance and ultra-low maintenance requirements.

Stator Tube

Standard 316 stainless steel construction for excellent corrosion resistance over the service life. Special materials available on request.

Motor Filling

Prefilled and tested with water/ glycol mixture, or potable water on request.

Thrust Bearing

Heavy-duty, custom polymer to ensure ultra-low maintenance and maximum reliability

PLEUGER Technologies/

Thrust Bearings

PLEUGER motors are equipped with heavy duty motor axial thrust bearings made of high-performance polymers for highest axial thrust loads ensuring extraordinary lifetime and reliability.

- Developed by PLEUGER Industries
- Benchmark in submersible motor technology
- In operation since 2013
- Custom Polymer Material
- Heavy-duty design, up to 300kN axial thrust
- Ensures extraordinary lifetime of motor

Advantages

- Tilting pads made of proprietary synthetic material
- Rotating runner made of Stainless Steel
- Increase of lifetime
- Maintenance free
- Allowed axial thrust increased by 100% (up to 300kN)
- Lower absorbed power by 20%

- Increased wear resistance by using new polymers
- Improved dry run capabilities
- Increased water hammer resistance
- Lower starting torque
- Bi-directional operation
- High temperature resistance
- No contamination based on carbon wear

COOLING CIRCUIT

Efficient Motor Cooling

- internal cooling system manufactured with a highly efficient cooling impeller
- Customized impeller for each motor size
- The design ensures sufficient thermal motor reserves and minimizes energy losses
- Re-windable / water filled
- Sealed winding wire (PE, PE+PA, etc.)

Cooling and lubrication options:

- Water-Glycol Mixture (standard)
- Drinking Water
- Pure Glycol
- Oil

Glycol plus additives prevent corrosion and serve as anti freeze, as well as being environmentally safe.

VPI

ROTOR MANUFACTURE - VACUUM PRESSURE IMPREGNATION (VPI)

The manufacture of our rotors includes a vacuum pressure impregnation process that ensures complete penetration of the epoxy into the micro laminations which are used to build up the layers of the rotor.

The VPI process results in a far stronger and more durable construction than traditional processes, allowing for final milling and honing to ensure the perfect rotor balance.

Due to the vacuum, air and moisture between the rotor laminations are extracted and replaced by liquid epoxy resin.

This prevents the occurrence of harmful:

- imbalance due to air pockets during operation of the motor
- corrosion between the rotor blades

The subsequent heat treatment of the rotor solidifies the already impregnated rotor pack into a solid block, which further increases the stiffness of the complete rotor.

Consequently, the bending of the rotor and thus the bending moment in the radial bearings are reduced, which leads to a longer service life of the bearings and thus of the motor.

Pleuger Submersible Motor range for Low Voltages

SF 1.0

														000		<u> </u>		
	Pov Model	ver Ou	tput Fr Voltage	eque	ncy Speed	Currei	nt Thrust Cap		Length	Po	wer Fac	tor	E	fficienc	У	Stand	Length	Otor leads Cross section
	d.o.l.	HP ³⁾	V ⁴⁾ - 3Ph	Hz	RPM	А	Down(lbf) ⁵⁾			1/1	3/4	1/2	1/1	3/4	1/2	leads shape	ft	mm ²
	M6-160-2	8.5	460	60	3440	13.3	2800	1350	21.81	0.810	0.765	0.670	0.745	0.755	0.730	1Fl	9.8	4x2,5
1	M6-200-2	11.5	460	60	3430	16.8	2800	1350	23.39	0.830	0.790	0.705	0.765	0.780	0.765	1Fl	9.8	4x2,5
	M6-240-2	15	460	60	3430	21	2800	1350	24.96	0.830	0.790	0.700	0.800	0.810	0.790	1Fl	9.8	4x2,5
ร	M6-270-2	17.5	460	60	3425	24	2800	1350	26.14	0.835	0.795	0.715		0.820	0.805	1Fl	9.8	4x2,5
5	M6-305-2	21	460	60	3420	29	2800	1350	27.52	0.845	0.810	0.730	0.800	0.815	0.805	1Fl	9.8	4x2,5 ¹⁾
Motors	M6-340-2	24	460	60	3420	33	2800	1350	28.90	0.845	0.810	0.725		0.825	0.815	1Fl	9.8	4x2,5 ¹⁾
6" P	M6-400-2 M6-460-2	29.5 35	460 460	60 60	3415 3430	39.5 47	2800 6100	1350 1350	31.26 34.49	0.855 0.840	0.820 0.800	0.735 0.710		0.830 0.840	0.820 0.825	1Fl 1Fl	9.8 9.8	4x4 ¹⁾ 4x6
9	M6-530-2	41.5	460	60	3425	55	6100	1350	37.24	0.850	0.800	0.725			0.825	1Fl	9.8	4x6 ¹⁾
	M6-600-2	48.5	460	60	3425	63	6100	1350	40.00	0.850	0.810	0.720		0.850	0.840	1Fl	9.8	4x10
	M6-650-2	53.5	460	60	3415	70	6100	1350	41.97	0.860	0.825	0.745	0.835	0.850	0.840	1Fl	9.8	4x10 ¹⁾
	M6-720-2	60.5	460	60	3415	78	6100	1350	44.72	0.860	0.825	0.740	0.840	0.850	0.845	1Fl	9.8	4x10 ¹⁾
	M8-330-2	53.5	460	60	3470	70	17985	2800	40.87	0.855	0.840	0.790	0.840	0.850	0.835	1Fl	16.4	4x10 ¹⁾
1	M8-410-2	64.5	460	60	3485	83	17985	2800	44.02	0.855	0.840	0.785	0.850	0.855	0.835	1Fl	23.0	4x16
	M8-480-2	74	460	60	3490	92	17985	2800	46.77	0.870	0.845	0.785		0.865	0.840	1Fl	23.0	4x16 ¹⁾
	M8-530-2	80.5	460	60	3485	102	17985	2800	48.74	0.860	0.850	0.795		0.865	0.845	1Fl	23.0	4x16 ¹⁾
	M8-580-2	88.5	460	60	3490	111	17985	2800	50.71	0.875	0.855	0.800		0.860	0.845	1Fl	23.0	4x16 ¹⁾
I	M8-650-2	94 107	460	60	3495	116	17985 17985	2800	53.46	0.875	0.855	0.805		0.860	0.845	1Rd	23.0	4x25
	M8-710-2 M8-820-2	107 121	460 460	60 60	3490 3490	133 149	17985	2800 2800	55.83 60.16	0.850 0.855	0.835 0.845	0.780 0.795		0.890 0.890	0.885 0.885	1Rd 4Rd	23.0 23.0	4x25 ¹⁾ 1x16P ¹⁾
S	M8-930-2	134	460	60	3490	165	17985	2800	64.49	0.850	0.835	0.795		0.890	0.885	4Rd	23.0	1x25P
5 L	M8-990-2	142	460	60	3500	175	17985	2800	66.85	0.850	0.830	0.775		0.895	0.885	4Rd	23.0	1x25P
Motors	M8-135-4	6.5	460	60	1750	10.5	17985	2800	33.19	0.765	0.685	0.565	0.750	0.750	0.720	1Fl	23.0	4x2.5
	M8-170-4	9	460	60	1755	14.3	17985	2800	34.57	0.745	0.665	0.540	0.780	0.775	0.740	1Fl	23.0	4x2.5
.	M8-210-4	12	460	60	1755	18.8	17985	2800	36.14	0.750	0.675	0.555	0.800	0.800	0.775	1Fl	23.0	4x2.5
	M8-280-4	18	460	60	1750	26.5	17985	2800	38.90	0.800	0.730	0.615	0.795	0.805	0.790	1Fl	23.0	4x2.5
	M8-340-4	24	460	60	1750	35	17985	2800	41.26	0.790	0.720	0.605		0.820	0.805	1Fl	23.0	4x4
	M8-420-4	29.5	460	60	1745	41	17985	2800	44.41	0.810	0.750	0.645	0.830	0.840	0.825	1Fl	23.0	4x4 ¹⁾
ľ	M8-520-4	35	460	60	1750	48.5	17985	2800	48.35	0.800	0.740	0.630		0.845	0.835	1Fl	23.0	4x6
ļ	M8-700-4 M8-870-4	49.5 60	460 460	60 60	1745 1750	69 84	17985 17985	2800 2800	55.43 62.13	0.820 0.795	0.765 0.735	0.655 0.620	0.820 0.850	0.835 0.850	0.825 0.835	1Fl 1Fl	23.0 23.0	4x10 ¹⁾ 4x16
	M8-1050-4	72.5	460	60	1750	101	17985	2800	73.15	0.785	0.720	0.600	0.855	0.855	0.840	1Fl	23.0	4x16 ¹⁾
	MI10-420-2	121	460	60	3465	156	17985	5000	53.27	0.830	0.800	0.720	0.875	0.885	0.875	4Rd	23.0	1x25P
	MI10-490-2	141	460	60	3470	179	17985	5000	56.02	0.835	0.800	0.720	0.880	0.885	0.875	4Rd	23.0	1x25P ¹⁾
	MI10-600-2	177	460	60	3465	220	17985	5000	60.35	0.850	0.820	0.745	0.880	0.890	0.880	4Rd	23.0	1x35P ¹⁾
	MI10-740-2	221	460	60	3470	275	17985	5000	65.87	0.845	0.810	0.730	0.890	0.895	0.885	4Rd	23.0	1x50P ¹⁾²⁾
	MI10-880-2	268	460	60	3470	330	17985	5000	71.38	0.845	0.805	0.725	0.895	0.895	0.885	3/4Rd		1x25PII ¹⁾
rs	MI10-960-2	295	460	60	3460	360	17985	5000	74.53	0.860	0.835	0.765	0.890	0.895	0.890	3/4Rd		1x25PII ¹⁾
otor	MI10-1070-2	322	460	60	3465	395	17985	5000	78.86	0.860	0.830	0.760			0.885			1x25PII ¹⁾
Mo	MI10-1200-2	355	460	60	3475	435	17985	5000	83.98	0.855	0.820	0.745			0.890	3/4Rd		1x35PII ¹⁾
10"	MI10-420-4 MI10-420-4	50 72	460 460	60 60	1750 1740	66 98	17985 17985	5000 5000	53.27 53.27	0.805 0.805	0.765 0.770	0.685 0.680		0.875 0.870	0.860	1Fl 1Fl	23.0 23.0	4x10 4x16 ¹⁾
4	MI10-420-4	88	460	60	1735	118	17985	5000	56.02	0.810	0.780	0.695			0.875	4Rd	23.0	1x16P
	MI10-600-4	115	460	60	1730	154	17985	5000	60.35	0.815	0.785	0.705			0.875	4Rd	23.0	1x25P
	MI10-740-4	145	460	60	1730	193	17985	5000	65.87	0.810	0.775	0.690		0.880	0.880	4Rd	23.0	1x25P ¹⁾
	MI10-880-4	177	460	60	1735	235	17985	5000	71.38	0.810	0.780	0.695	0.870	0.880	0.880	4Rd	23.0	1x35P ¹⁾
	MI10-960-4	193	460	60	1735	255	17985	5000	74.53	0.810	0.775	0.695			0.885	4Rd	23.0	1x35P ¹⁾
	MI10-1070-4	212	460	60	1735	280	17985	5000	78.86	0.810	0.775	0.690		0.880	0.880	4Rd	23.0	1x50P ¹⁾²⁾
	MI10-1200-4	241	460	60	1735	320	17985	5000	83.98	0.805	0.770	0.685		0.890	0.885	4Rd	23.0	1x50P ¹⁾²⁾
	VNI12-65-2	248	460	60	3495	300 24E	26977	5000	67.48	0.875	0.860	0.815		0.880	0.860	2Rd	32.8	3/4x25II ¹⁾
	VNI12-75-2 VNI12-90-2	288 322	460 460	60 60	3495 3505	345 385	26977 26977	5000 5000	71.42 77.32	0.880 0.880	0.870 0.860	0.830 0.810		0.880 0.880		2Rd 2Rd		3/4x35ll ¹⁾ 3/4x50ll ¹⁾
(9	VNI12-90-2 VNI12-65-4	168	460	60	1720	215	26977	5000	67.48	0.880	0.800	0.810		0.885		1Rd	32.8	4x50 ¹⁾
2 " ⁶⁾	VNI12-75-4	201	460	60	1720	260	26977	5000	71.42	0.825	0.810	0.750			0.885	2Rd		3/4x25ll ¹⁾
-	VNI12-90-4	248	460	60	1720	320	26977	5000	77.32	0.825	0.810	0.755		0.890		2Rd		3/4x35ll1)
	VNI12-100-4	275	460	60	1720	350	26977	5000	81.26	0.830	0.810	0.755		0.890	0.885	2Rd	32.8	3/4x35ll1)
	VNI12-110-4	308	460	60	1720	400	26977	5000	85.20	0.825	0.805	0.740			0.885	2Rd		3/4x50II1)
	VNI12-120-4	350	460	60	1715	450	26977	5000	89.13	0.830	0.815	0.750			0.885	2Rd		3/4x50ll1)
	VNI14-50-2	288	460	60	3500	355	33721	9000	71.81	0.850	0.850	0.810		0.890	0.870	2Rd		3/4x35ll ¹⁾
	VNI14-60-2	322	460	60	3515	395	33721	9000	75.75	0.850	0.835	0.780		0.890	0.865 0.875	2Rd	32.8 32.8	3/4x50II ¹⁾
4 " ⁶⁾	VNI14-50-4 VNI14-60-4	177 214	460 460	60 60	1730 1730	230 280	33721 33721	9000 9000	71.81 75.75	0.810 0.820	0.790 0.800	0.720 0.735		0.885 0.885	0.875	1Rd 1Rd	32.8 32.8	4x70 4x70 ¹⁾
4	VNI14-60-4 VNI14-70-4	214	460	60	1730	310	33721	9000	79.09	0.820	0.800	0.735			0.875	2Rd		3/4x35ll ¹⁾
			460	60	1730	355	33721	9000	83.62	0.820	0.800	0.735		0.8890		2Rd 2Rd		3/4x35ll ¹⁾
•		2/5	400											2.000				
•	VNI14-90-4 VNI14-90-4	275 308	460	60	1735	400	33721	9000	87.56	0.820	0.795	0.725	0.885	0.890	0.875	2Rd	32.8	3/4x50II ¹⁾
•	VNI14-80-4							9000 9000	87.56 91.50	0.820 0.820	0.795 0.795	0.725 0.725			0.875 0.875	2Rd 2Rd		3/4x50II ¹⁾ 3/4x50II ¹⁾
16 ^{"6)}	VNI14-80-4 VNI14-90-4	308	460	60	1735	400	33721						0.890		0.875	2Rd	32.8	

1) Cable must be submerged, 2) PE conductor outside the motor, 3) max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 4) +14/-6%, other voltages up to 1000V on request, 5) max. value for thrust bearing only, motor values see pages "motor measures & specifications", 6) higher power output on request

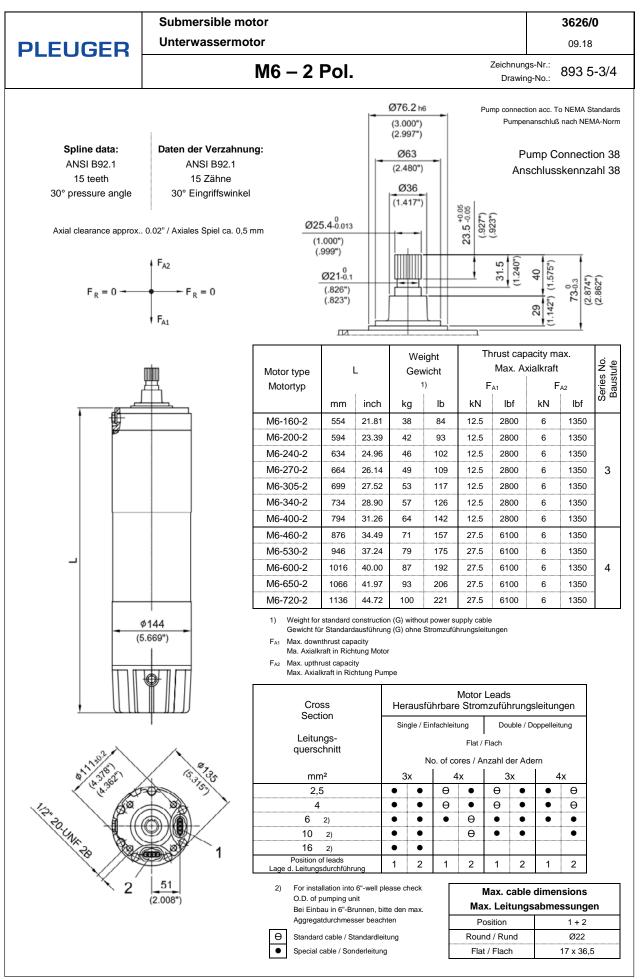
Pleuger Submersible Motor range for Low Voltages

SF 1.15

	Pow	ver Ou	itput Fre	eque	ncy	Curre	nt		Length				E	fficienc	у	Stand	ard m	otor leads
	Model		Voltage		Speed		Thrust Cap	pacity ma	ax.	Po	wer Fac	tor				No. of	Length	Cross section
	d.o.l.	HP ³⁾	V ⁴⁾ - 3Ph	Hz	RPM	А	Down(lbf) ⁵⁾	Up (lbf)	inches	1/1	3/4	1/2	1/1	3/4	1/2	leads shape	ft	mm ²
	M6-160-2	7.5	460	60	3470	11.6	2800	1350	21.81	0.790	0.730	0.630	0.755	0.750	0.715	1Fl	9.8	4x2,5
	M6-200-2	10	460	60	3460	14.9	2800	1350	23.39	0.815	0.770	0.670	0.775	0.780	0.750	1Fl	9.8	4x2,5
	M6-240-2	12.5	460	60	3460	18.3	2800	1350	24.96	0.810	0.760	0.665	0.805	0.805	0.780	1Fl	9.8	4x2,5
S	M6-270-2	15	460	60	3450	21.5	2800	1350	26.14	0.820	0.775	0.685	0.815	0.820	0.795	1Fl	9.8	4x2,5
P	M6-305-2	18	460	60	3450	25	2800	1350	27.52	0.830	0.785	0.695	0.810	0.815	0.795	1Fl	9.8	4x2,5 ¹⁾
Ğ	M6-340-2	21	460	60	3450	28.5	2800	1350	28.90	0.830	0.785	0.690	0.820	0.825	0.805	1Fl	9.8	4x2,5 ¹⁾
Motors	M6-400-2	25.5	460	60	3450	34.5	2800	1350	31.26	0.840	0.795	0.700	0.825	0.830	0.815	1Fl	9.8	4x4 ¹⁾
.0	M6-460-2	30.5	460	60	3460	41	6100	1350	34.49	0.820	0.770	0.670		0.840	0.815	1Fl	9.8	4x6
U	M6-530-2	36	460	60	3450	48.5	6100	1350	37.24	0.830	0.785	0.685	0.840	0.840	0.825	1Fl	9.8	4x6 ¹⁾
	M6-600-2	42	460	60	3450	56	6100	1350	40.00	0.830	0.785	0.685		0.850		1Fl	9.8	4x10
	M6-650-2	47	460	60	3440	62	6100	1350	41.97	0.845	0.805	0.715	0.845		0.835	1Fl	9.8	4x10 ¹⁾
	M6-720-2	52.5	460	60	3445	69	6100	1350	44.72	0.845	0.800	0.705		0.850	0.835	1Fl	9.8	4x10 ¹⁾
	M8-330-2	46.5	460	60	3495	61	17985	2800	40.87	0.855	0.830	0.765	0.845	0.845	0.825	1Fl	16.4	4x10 ¹⁾
		40.5 55.5				72	17985	2800		0.855	0.825	0.760		0.850	0.825		23.0	
	M8-410-2		460	60	3505				44.02							1Fl		4x16
	M8-480-2	64.5	460	60	3505	81	17985	2800	46.77	0.860	0.830	0.760		0.860	0.830	1Fl	23.0	4x16 ¹⁾
	M8-530-2	70	460	60	3505	89	17985	2800	48.74	0.855	0.835	0.770	0.860	0.860	0.830	1Fl	23.0	4x16 ¹⁾
	M8-580-2	77	460	60	3505	98	17985	2800	50.71	0.865	0.840	0.775		0.860	0.835	1Fl	23.0	4x16 ¹⁾
	M8-650-2	82	460	60	3510	102	17985	2800	53.46	0.870	0.840	0.780		0.860	0.835	1Rd	23.0	4x25
	M8-710-2	94	460	60	3505	117	17985	2800	55.83	0.845	0.820	0.760		0.890	0.880	1Rd	23.0	4x25 ¹⁾
	M8-820-2	105	460	60	3505	129	17985	2800	60.16	0.850	0.830	0.775	0.890		0.880	4Rd	23.0	1x16P ¹⁾
S	M8-930-2	117	460	60	3510	144	17985	2800	64.49	0.845	0.820	0.760	0.895	0.895	0.880	4Rd	23.0	1x25P
5	M8-990-2	123	460	60	3515	153	17985	2800	66.85	0.840	0.815	0.745	0.900	0.895	0.880	4Rd	23.0	1x25P
Motors	M8-135-4	5.5	460	60	1760	9.3	17985	2800	33.19	0.715	0.630	0.510	0.755	0.740	0.695	1Fl	23.0	4x2.5
	M8-170-4	7.5	460	60	1765	12.7	17985	2800	34.57	0.695	0.610	0.485	0.780	0.765	0.720	1Fl	23.0	4x2.5
-∞	M8-210-4	10.5	460	60	1760	17.3	17985	2800	36.14	0.725	0.640	0.520	0.800	0.795	0.755	1Fl	23.0	4x2.5
	M8-280-4	15.5	460	60	1755	23.5	17985	2800	38.90	0.765	0.690	0.565	0.805	0.800	0.775	1Fl	23.0	4x2.5
	M8-340-4	21	460	60	1755	31.5	17985	2800	41.26	0.755	0.680	0.560	0.820	0.820	0.795	1Fl	23.0	4x4
	M8-420-4	25.5	460	60	1755	36.5	17985	2800	44.41	0.780	0.715	0.600	0.835	0.835	0.815	1Fl	23.0	4x4 ¹⁾
	M8-520-4	30	460	60	1755	43.5	17985	2800	48.35	0.770	0.705	0.585	0.845	0.845	0.825	1Fl	23.0	4x6
	M8-700-4	43	460	60	1755	61	17985	2800	55.43	0.795	0.730	0.610	0.830	0.835	0.815	1Fl	23.0	4x10 ¹⁾
	M8-870-4	52.5	460	60	1755	75	17985	2800	62.13	0.770	0.695	0.575	0.850	0.850	0.825	1Fl	23.0	4x16
	M8-1050-4	63	460	60	1760	91	17985	2800	73.15	0.755	0.680	0.560	0.855	0.855	0.830	1Fl	23.0	4x16 ¹⁾
	MI10-420-2	105	460	60	3485	136	17985	5000	53.27	0.820	0.775	0.680	0.880	0.880	0.865	4Rd	23.0	1x25P
	MI10-490-2	122	460	60	3490	157	17985	5000	56.02	0.820	0.775	0.680		0.885	0.865	4Rd	23.0	1x25P ¹⁾
	MI10-600-2	154	460	60	3485	194	17985	5000	60.35	0.840	0.800	0.715		0.890	0.875	4Rd	23.0	1x35P ¹⁾
	MI10-740-2	192	460	60	3490	240	17985	5000	65.87	0.830	0.785	0.695		0.890	0.875	4Rd	23.0	1x50P ¹⁾²⁾
	MI10-880-2	233	460	60	3490	295	17985	5000	71.38	0.830	0.780	0.685		0.895	0.880	3/4Rd		1x25PII ¹⁾
s	MI10-960-2	256	460	60	3480	315	17985	5000	74.53	0.850	0.815	0.735	0.895	0.895	0.880	3/4Rd		1x25PII ¹⁾
tors	MI10-300-2 MI10-1070-2	280	460	60	3485	345	17985	5000	78.86	0.850	0.810	0.730			0.880			1x25PII ¹⁾
ğ	MI10-1070-2 MI10-1200-2	308	460	60	3490	385	17985	5000	83.98	0.830	0.795	0.730		0.895		3/4Rd		1x35PII ¹⁾
ž	MI10-1200-2 MI10-420-4	43	460	60	1760	58	17985		53.27	0.790	0.740	0.645		0.870	0.850		23.0	
	MI10-420-4 MI10-420-4	45 63	460	60	1750	58 86	17985	5000 5000	53.27	0.790	0.740	0.645	0.875		0.850	1Fl 1Fl	23.0	4x10 4x16 ¹⁾
9	MI10-420-4 MI10-490-4	76.5	460	60	1745	103	17985	5000	56.02	0.795	0.740	0.660		0.870		4Rd	23.0	4x167 1x16P
			460	60	1740	135	17985		60.35	0.805	0.755			0.880		4Rd	23.0	
	MI10-600-4	100 126				169		5000 5000	65.87	0.805	0.750	0.670			0.870	4Rd 4Rd		1x25P 1x25P ¹⁾
	MI10-740-4	126	460	60	1745		17985					0.655		0.880			23.0	
	MI10-880-4	154	460	60	1745	205	17985	5000	71.38	0.800	0.755	0.660	0.875		0.875	4Rd	23.0	1x35P ¹⁾
	MI10-960-4	168	460	60	1745	225	17985	5000	74.53	0.800	0.750	0.660		0.890	0.880	4Rd	23.0	1x35P ¹⁾
	MI10-1070-4	184	460	60	1745	245	17985	5000	78.86	0.800	0.750	0.650	0.875		0.875	4Rd	23.0	1x50P ¹⁾²⁾
	MI10-1200-4	210	460	60	1745	280	17985	5000	83.98	0.795	0.745	0.645		0.890	0.880	4Rd	23.0	1x50P ¹⁾²⁾
	VNI12-65-2	216	460	60	3510	260	26977	5000	67.48	0.870	0.845	0.790		0.875	0.845	2Rd	32.8	
	VNI12-75-2	250	460	60	3510	305	26977	5000	71.42	0.875	0.860	0.805	0.885		0.850	2Rd		3/4x35ll ¹⁾
	VNI12-90-2	280	460	60	3520	340	26977	5000	77.32	0.870	0.850	0.790	0.885		0.840	2Rd		3/4x50ll1)
2" ⁶⁾	VNI12-65-4	146	460	60	1735	190	26977	5000	67.48	0.820	0.790	0.715	0.880		0.875	1Rd	32.8	4x50 ¹⁾
12	VNI12-75-4	175	460	60	1735	225	26977	5000	71.42	0.820	0.790	0.720	0.885	0.890	0.880	2Rd	32.8	3/4x25ll1)
•	VNI12-90-4	216	460	60	1730	275	26977	5000	77.32	0.825	0.795	0.730	0.885	0.890	0.880	2Rd		3/4x35ll1)
	VNI12-100-4	239	460	60	1730	305	26977	5000	81.26	0.825	0.795	0.725		0.890	0.880	2Rd		3/4x35ll1)
	VNI12-110-4	268	460	60	1735	345	26977	5000	85.20	0.820	0.785	0.710	0.890	0.890	0.880	2Rd	32.8	3/4x50ll1)
	VNI12-120-4	303	460	60	1730	390	26977	5000	89.13	0.825	0.795	0.720	0.880	0.885	0.880	2Rd		3/4x50II1)
	VNI14-50-2	250	460	60	3515	305	33721	9000	71.81	0.855	0.840	0.790	0.895	0.885	0.860	2Rd	32.8	3/4x35ll1)
		280	460	60	3530	350	33721	9000	75.75	0.845	0.820	0.755	0.895		0.855	2Rd		3/4x50ll ¹⁾
	VNI14-60-2	45.4	460	60	1740	205	33721	9000	71.81	0.805	0.770	0.690	0.885	0.885	0.865	1Rd	32.8	4x70
	VNI14-60-2 VNI14-50-4	154			1740	240	33721	9000	75.75	0.815	0.780	0.705	0.885		0.865	1Rd	32.8	4x70 ¹⁾
1 6)		154 186	460	60	1740													
14" ⁶⁾	VNI14-50-4 VNI14-60-4	186				275	33721	9000	79.09	0,810	0,780	0.705	0.885	0.885	0.8/0	280	32.X	3/4×3511 1
14 " ⁶⁾	VNI14-50-4 VNI14-60-4 VNI14-70-4	186 210	460	60	1740	275 310	33721 33721	9000 9000	79.09 83.62	0.810	0.780	0.705			0.870 0.870	2Rd 2Rd		3/4x35ll ¹⁾ 3/4x35ll ¹⁾
14 " ⁶⁾	VNI14-50-4 VNI14-60-4 VNI14-70-4 VNI14-80-4	186 210 239	460 460	60 60	1740 1745	310	33721	9000	83.62	0.815	0.780	0.700	0.890	0.885	0.870	2Rd	32.8	3/4x35ll1)
14"6)	VNI14-50-4 VNI14-60-4 VNI14-70-4 VNI14-80-4 VNI14-90-4	186 210 239 268	460 460 460	60 60 60	1740 1745 1745	310 350	33721 33721	9000 9000	83.62 87.56	0.815 0.810	0.780 0.775	0.700 0.695	0.890 0.890	0.885 0.885	0.870 0.870	2Rd 2Rd	32.8 32.8	3/4x35II ¹⁾ 3/4x50II ¹⁾
"6) 14 " ⁽⁶⁾	VNI14-50-4 VNI14-60-4 VNI14-70-4 VNI14-80-4	186 210 239	460 460	60 60	1740 1745 1745 1745	310	33721	9000	83.62	0.815	0.780 0.775 0.770	0.700 0.695 0.680	0.890 0.890 0.890	0.885	0.870 0.870 0.870	2Rd 2Rd 2Rd	32.8 32.8 32.8	3/4x35ll1)

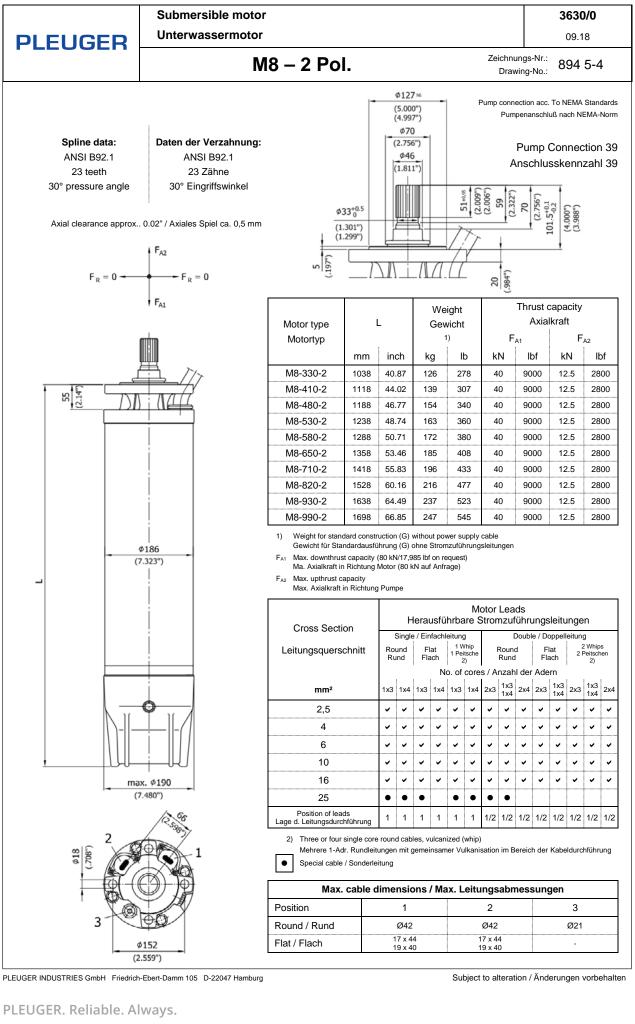
1) Cable must be submerged, 2) PE conductor outside the motor, 3) max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 4) +14/-6%, other voltages up to 1000V on request, 5) max. value for thrust bearing only, motor values see pages "motor measures & specifications", 6) higher power output on request

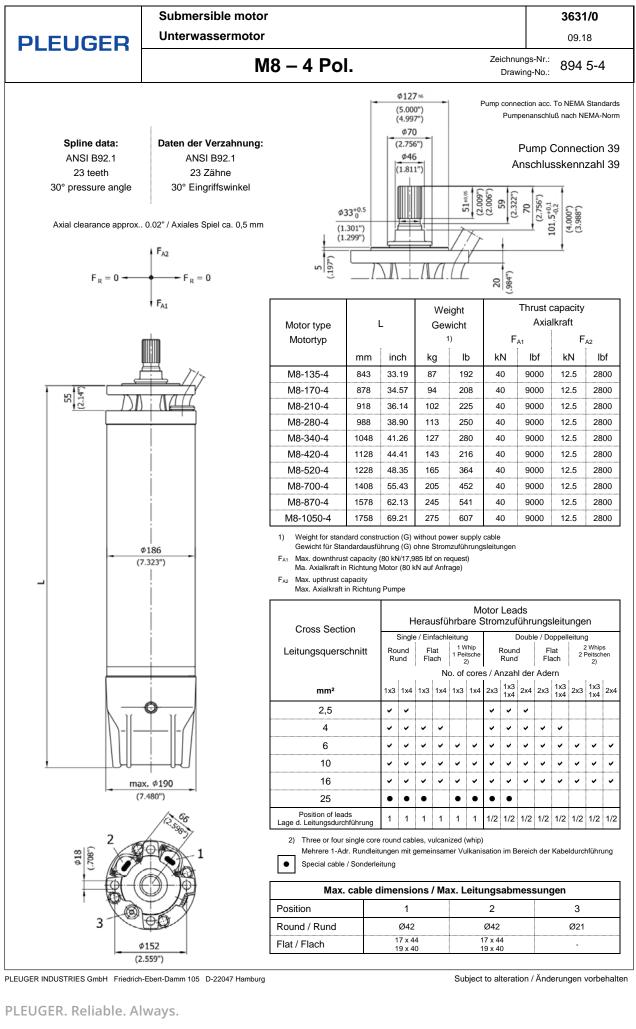
Pleuger Submersible Motor range for Medium Voltages SF 1.0


		Pov	ver Ou	tput Fr	eque	ncy	Curre	nt		Length				1	fficienc	у	Stand	lard mo	tor leads
		Model d.o.l.	HP ²⁾	Voltage V ³⁾ - 3Ph		Speed RPM		Thrust Cap Down(lbf) ⁴⁾	. 1			wer Fac 3/4	tor: 1/2	1/1	3/4	1/2	No. of leads shape	Length ft	Cross section mm ²
		VNI14-60-4	115	2300	60	1755	33	33721	9000	75.75	0.775	0.720	0.615	0.855	0.845	0.815	3Rd	39.37	1x16
	2300V	VNI14-70-4	173	2300	60	1740	47	33721	9000	79.09	0.800	0.755	0.665	0.865	0.865	0.845	3Rd	39.37	1x16
	- 73	VNI14-80-4	230	2300	60	1730	61	33721	9000	83.62	0.815	0.780	0.710	0.870	0.875	0.860	3Rd	39.37	1x16
	-	VNI14-90-4	288	2300	60	1725	76	33721	9000	87.56	0.810	0.780	0.705	0.870	0.880	0.865	3Rd	39.37	1x16
	Motors	VNI14-100-4	316	2300	60	1730	84	33721	9000	91.50	0.805	0.775	0.695	0.875	0.880	0.870	3Rd	39.37	1x16
	14 	VNI14-110-4	345	2300	60	1730	81	33721	9000	95.43	0.810	0.775	0.700	0.880	0.885	0.870	3Rd	39.37	1x16
		VNI14-120-4	403	2300	60	1725	106	33721	9000	99.37	0.805	0.775	0.700	0.880	0.885	0.875	3Rd	39.37	1x16
	60 <	MI16-120-4	230	4160	60	1760	34	33721	9000	99.76	0.810	0.765	0.680	0.860	0.845	0.815	3Rd	39.37	1x16
	- 416	MI16-130-4	288	4160	60	1760	42	33721	9000	103.70	0.810	0.765	0.680	0.870	0.860	0.830	3Rd	39.37	1x16
	-	MI16-145-4	403	4160	60	1760	60	33721	9000	109.61	0.785	0.730	0.630	0.880	0.875	0.845	3Rd	39.37	1x16
	Motors	MI16-165-4	575	4160	60	1750	84	33721	9000	117.48	0.795	0.745	0.645	0.890	0.885	0.865	3Rd	39.37	1x16
Ę		MI16-185-4	690	4160	60	1745	99	33721	9000	125.35	0.810	0.770	0.685	0.890	0.890	0.875	3Rd	39.37	1x16
1 '	•																		

1) Cable must be submerged, 2) max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 3) +10/-10%, other voltages up to 1000V on request 4) max. value for thrust bearing only, motor values see pages "motor measures & specifications"

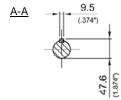
Pleuger Submersible Motor range for Medium Voltages SF 1.15


	Pov	ver Ou	tput Fr	eque	ncy	Curre	nt		Length				E	fficienc	y	Stand	dard mo	tor leads
	Model d.o.l.	HP ²⁾	Voltage V ³⁾ - 3Ph		Speed RPM	A	Thrust Cap Down(lbf) ⁴⁾	,			wer Fac 3/4	tor: 1/2	1/1	3/4	1/2	No. of leads shape	Length C ft	ross section mm²
	VNI14-60-4	100	2300	60	1760	30	33721	9000	75.75	0.750	0.685	0.575	0.850	0.840	0.800	3Rd	39.37	1x16
2300V	VNI14-70-4	150	2300	60	1750	42	33721	9000	79.09	0.780	0.730	0.630	0.865	0.860	0.835	3Rd	39.37	1x16
- 23	VNI14-80-4	200	2300	60	1740	54	33721	9000	83,62	0.800	0.760	0.675	0.870	0.870	0.850	3Rd	39.37	1x16
ors	VNI14-90-4	250	2300	60	1740	67	33721	9000	87.56	0.800	0.760	0.670	0.875	0.875	0.860	3Rd	39.37	1x16
Motors	VNI14-100-4	275	2300	60	1740	74	33721	9000	91.50	0.795	0.750	0.665	0.880	0.880	0.860	3Rd	39.37	1x16
14"	VNI14-110-4	300	2300	60	1740	80	33721	9000	95.43	0.795	0.755	0.665	0.885	0.880	0.865	3Rd	39.37	1x16
	VNI14-120-4	350	2300	60	1740	93	33721	9000	99.37	0.795	0.755	0.670	0.885	0.885	0.870	3Rd	39.37	1x16
60V	MI16-120-4	200	4160	60	1765	31	33721	9000	99.76	0.790	0.735	0.645	0.855	0.835	0.800	3Rd	39.37	1x16
- 416	MI16-130-4	250	4160	60	1765	38	33721	9000	103.70	0.790	0.735	0.645	0.865	0.850	0.815	3Rd	39.37	1x16
	MI16-145-4	350	4160	60	1765	54	33721	9000	109.61	0.760	0.700	0.590	0.880	0.865	0.835	3Rd	39.37	1x16
Motors	MI16-165-4	500	4160	60	1760	76	33721	9000	117.48	0.770	0.710	0.605	0.890	0.880	0.855	3Rd	39.37	1x16
16"	MI16-185-4	600	4160	60	1755	88	33721	9000	125.35	0.795	0.745	0.645	0.890	0.885	0.865	3Rd	39.37	1x16

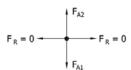

1) Cable must be submerged, 2) max. water temperature: 30°C/86°F, min. water velocity at motor surface: 0,5 m/s /1.64 ft/s, 3) +10/-10%, other voltages up to 1000V on request 4) max. value for thrust bearing only, motor values see pages "motor measures & specifications"

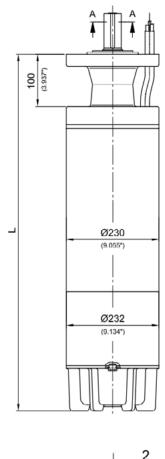
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

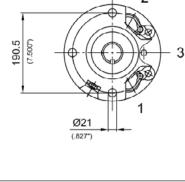
Subject to alteration / Änderungen vorbehalten

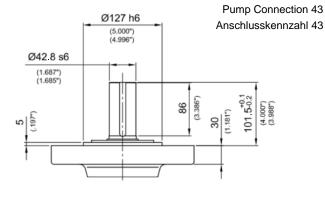

PLEUGER

Unterwassermotor Submersible motor


3628/0 09.18


MI10 – 2 Pol.


Zeichnungs-Nr.: 877 5-3 Drawing-No .:



Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type		L		eight vicht		Thrust c Axial	. ,	
Motortyp				1)	F	A1	F	A2
	mm	inch	kg	lb	kN	lbf	kN	lbf
MI10-420-2	1353	53.27	231	510	50	11250	22.5	5000
MI10-490-2	1423	56.02	249	549	50	11250	22.5	5000
MI10-600-2	1533	60.35	276	609	50	11250	22.5	5000
MI10-740-2	1673	65.87	312	688	50	11250	22.5	5000
MI10-880-2	1813	71.38	347	766	50	11250	22.5	5000
MI10-960-2	1893	74.53	367	810	50	11250	22.5	5000
MI10-1070-2	2003	78.86	395	871	50	11250	22.5	5000
MI10-1200-2	2133	83.98	428	944	50	11250	22.5	5000

Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen 1)

Max. downthrust capacity (80 kN/17,985 lbf on request) F_{A1}

Ma. Axialkraft in Richtung Motor (80 kN auf Anfrage)

 F_{A2}

Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

Cross Section	Motor Leads Herausführbare Stromzuführungsleitungen													
01033 0001011	:	Single	e / Eir	fachl	eitung)		[Doubl	e / Do	oppell	eitun	g	
Leitungsquerschnitt		und Ind	FI Fla	at ach	1 W 1 Pei 2			Roun Runc		FI Fla	at ach		2 Whip Peitsch 2)	
			:	N	o. of	core	s/A	nzah	l der	Ade	rn			
mm²	1x3	1x4	1x3	1x4	1x3	1x4	2x3	1x3 1x4	2x4	2x3	1x3 1x4	2x3	1x3 1x4	2x4
2,5	•	•	•				>	~	~	•	~			
4	~	•	•	•	•	•	~	•	•	•	•	•	•	•
6	~	•	~	•	~	•	~	~	~	~	~	~	~	~
10	~	•	~	•	•	•	~	~	~	•	~	~	~	•
16	~	•	~	•	~	•	~	~	~	~	~	~	~	~
25	~	•	~		~	•	~	~	~	~		~	~	~
35	~	•			~	•	~	~	~			~	~	~
50	~				•	٠	~					•	٠	
Position of leads Lage d. Leitungsdurchführung	1	1	1	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

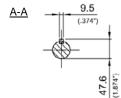
2) Three or four single core round cables, vulcanized (whip)

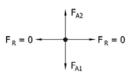
Mehrere 1-Adr. Rundleitungen mit gemeinsamer Vulkanisation im Bereich der Kabeldurchführung • Special cable / Sonderleitung

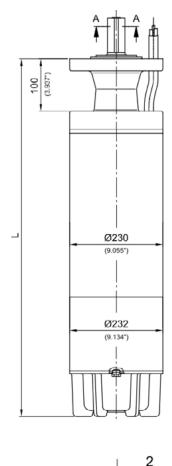
Max. cable dimensions / Max. Leitungsabmessungen												
Position 1 2 3												
Round / Rund	Ø42	Ø42	Ø15									
Flat / Flach	17 x 44 19 x 40	17 x 44 19 x 40	-									

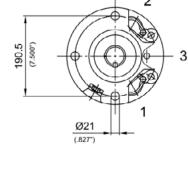
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

Subject to alteration / Änderungen vorbehalten


Submersible motor Unterwassermotor


Pump Connection 43


MI10 – 4 Pol.


Zeichnungs-Nr.: 877 5-3 Drawing-No.:

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Ø127 h6 Anschlusskennzahl 43 (5.000°) (4.996°) Ø42.8 s6 (1.687") (1.685") (3.386") 101 5-0.2 (4.000") (3.988") 86 (1.181") 5 (.197") 30

Motor type		L		eight vicht		Thrust c Axial	. ,	
Motortyp			1	1)	F	A1	F	A2
	mm	inch	kg	lb	kN	lbf	kN	lbf
MI10-420-4	1353	53.27	231	510	50	11250	22.5	5000
MI10-490-4	1423	56.02	249	549	50	11250	22.5	5000
MI10-600-4	<mark>1533</mark>	60.35	<mark>276</mark>	<mark>609</mark>	<mark>50</mark>	<mark>11250</mark>	<mark>22.5</mark>	<mark>5000</mark>
MI10-740-4	1673	65.87	312	688	50	11250	22.5	5000
MI10-880-4	1813	71.38	347	766	50	11250	22.5	5000
MI10-960-4	1893	74.53	367	810	50	11250	22.5	5000
MI10-1070-4	2003	78.86	395	871	50	11250	22.5	5000
MI10-1200-4	2133	83.98	428	944	50	11250	22.5	5000

Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen Max. downthrust capacity (80 kN/17,985 lbf on request) Ma. Axialkraft in Richtung Motor (80 kN auf Anfrage) 1)

F_{A1}

F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe

Cross Section	Motor Leads Herausführbare Stromzuführungsleitungen													
Closs Section	:	Single	e / Eir	fachl	eitung	1		[Doubl	e / Do	ppell	eitung	g	
Leitungsquerschnitt		und	FI Fla			/hip tsche !)		Round Rund		FI Fla	at ach		2 Whip Peitsch 2)	
				N	o. of	core	s/A	nzah	l der	Ade	rn			
													1x3 1x4	2x4
2,5	•	•	•	•			>	•	•	•	•			
4	~	•	•	•	•	•	•	•	•	•	•	•	•	•
6	~	•	•	•	•	•	•	~	~	~	•	•	•	•
10	~	•	•	•	•	•	>	•	•	•	•	•	•	•
16	~	•	•	•	•	•	•	•	•	•	•	•	~	•
25	~	~	~		•	•	>	~	~	~		~	~	•
35	~	•			•	•	~	•	•			•	•	•
50	✓ • ✓ • ✓													
Position of leads Lage d. Leitungsdurchführung	1	1	1	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2

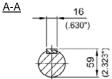
2) Three or four single core round cables, vulcanized (whip)

Mehrere 1-Adr. Rundleitungen mit gemeinsamer Vulkanisation im Bereich der Kabeldurchführung ٠ Special cable / Sonderleitung

Max. cable dimensions / Max. Leitungsabmessungen										
Position	1	2	3							
Round / Rund	Ø42	Ø42	Ø15							
Flat / Flach	17 x 44 19 x 40	17 x 44 19 x 40	-							

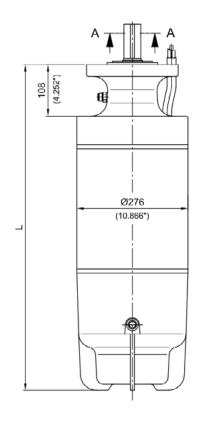
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

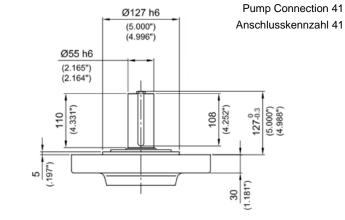
Subject to alteration / Änderungen vorbehalten


PLEUGER

Submersible motor Unterwassermotor

3509/0 09.18


VNI12 – 2 Pol.


Zeichnungs-Nr.: 878 5-2 Drawing-No.:

Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type	1	L		ight vicht	Thrust capacity Axialkraft					
Motortyp				1)	F	A1	F _{A2}			
	mm	inch	kg	lb	kN	lbf	kN	lbf		
VNI12-65-2	1714	67.48	475	1048	60	13500	22.5	5000		
VNI12-75-2	1814	71.42	525	1158	60	13500	22.5	5000		
VNI12-90-2	1964	77.32	600	1323	60	13500	22.5	5000		
VNI12-100-2	2064	81.26	650	1434	60	13500	22.5	5000		
VNI12-110-2	2164	85.20	700	1544	60	13500	22.5	5000		
VNI12-120-2	2264	89.13	750	1654	60	13500	22.5	5000		

Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen 1)

Max. downthrust capacity (120 kN/26,977 lbf on request) Ma. Axialkraft in Richtung Motor (120 kN auf Anfrage) F_{A1}

FA2 Max. upthrust capacity

Max.	Axialkraft i	n Richtung	Pumpe
------	--------------	------------	-------

		Hera	usfüh	-	Aotor Strom			sleitur	ngen		
Cross Section	Sin Einfach		Do	Double ppelleitu	ina	Single-Core-Cable Einzeladerleitung					
Leitungs- querschnitt		Roun	d 7 Multi d / Mehra	-Core	5	Round Rund					
			o. of core ahl der A			No. of leads Anzahl der Leitungen					
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8	
16	*	•	•	~	~	>	~	~	•	~	
25	•	~	~	~	~	~	~	~	~	~	
35	>	~	~	~	~	~	~	~	~	~	
50	>	~	~	~	~	、	~	~	~	~	
70	>			~		>	~	~	~	~	
95			•			~	~		•		
Position of leads Lage der Leitungsdurchführung	1/9	1/9	1,5 / 9,10	1,5 / 9,10	1,5 / 9,10	1,2,4	14	16	16, 8	18	

Max. cable dimensions / Max. Leitungsabmessungen											
Position	1	2	3	4	5	6	7	8	9	10	
Round / Rund	ø40	ø26	ø40	ø26	ø26	ø26	ø26	ø26	ø45	ø45	

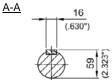
PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

1/9

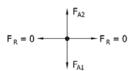
Ø?

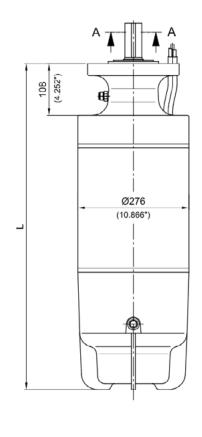
Subject to alteration / Änderungen vorbehalten

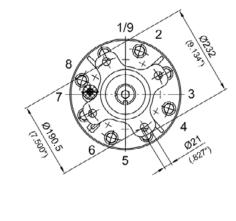
Oord . 17.500

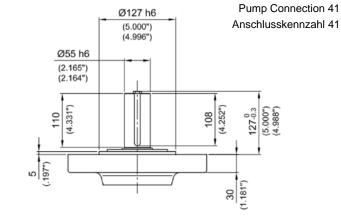

PLEUGER

Submersible motor Unterwassermotor


3510/0 09.18


VNI12 – 4 Pol.


Zeichnungs-Nr.: 878 5-2 Drawing-No.:

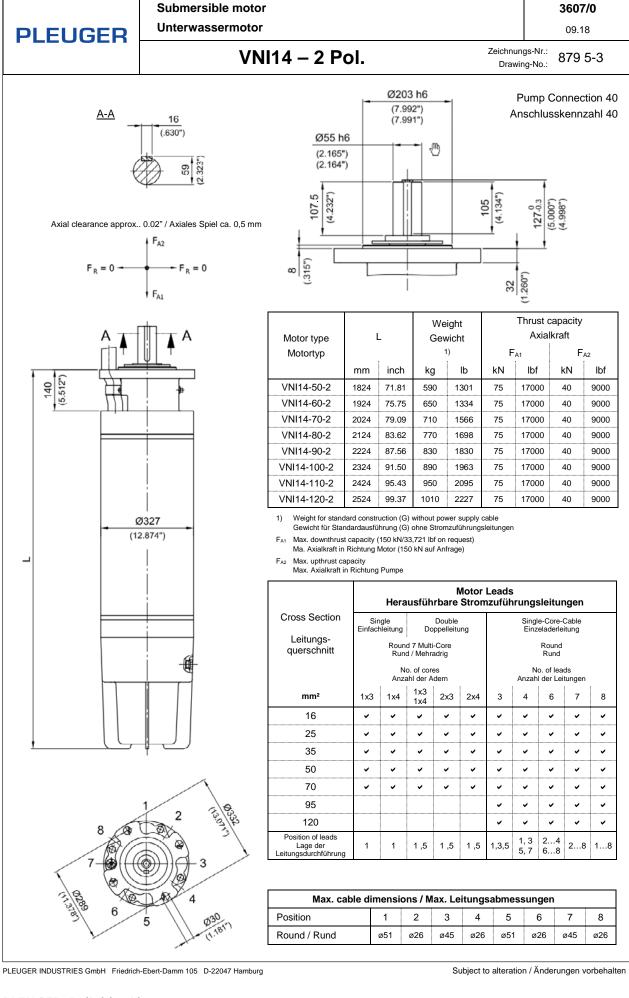


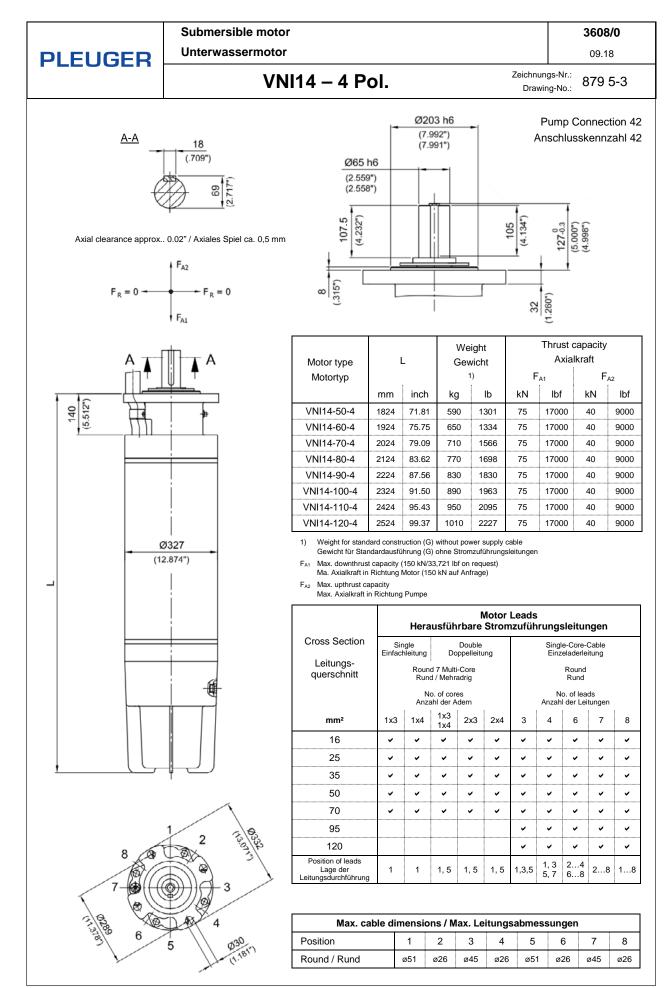
Axial clearance approx.. 0.02" / Axiales Spiel ca. 0,5 mm

Motor type Motortyp	L			eight vicht	Thrust capacity Axialkraft F _{A1} F _{A2}				
	mm	inch	kg	lb	kN	lbf	kN	lbf	
VNI12-65-4	1714	67.48	475	1048	60	13500	22.5	5000	
VNI12-75-4	1814	71.42	525	1158	60	13500	22.5	5000	
VNI12-90-4	1964	77.32	600	1323	60	13500	22.5	5000	
VNI12-100-4	2064	81.26	650	1434	60	13500	22.5	5000	
VNI12-110-4	2164	85.20	700	1544	60	13500	22.5	5000	
VNI12-120-4	2264	89.13	750	1654	60	13500	22.5	5000	

Weight for standard construction (G) without power supply cable Gewicht für Standardausführung (G) ohne Stromzuführungsleitungen 1)

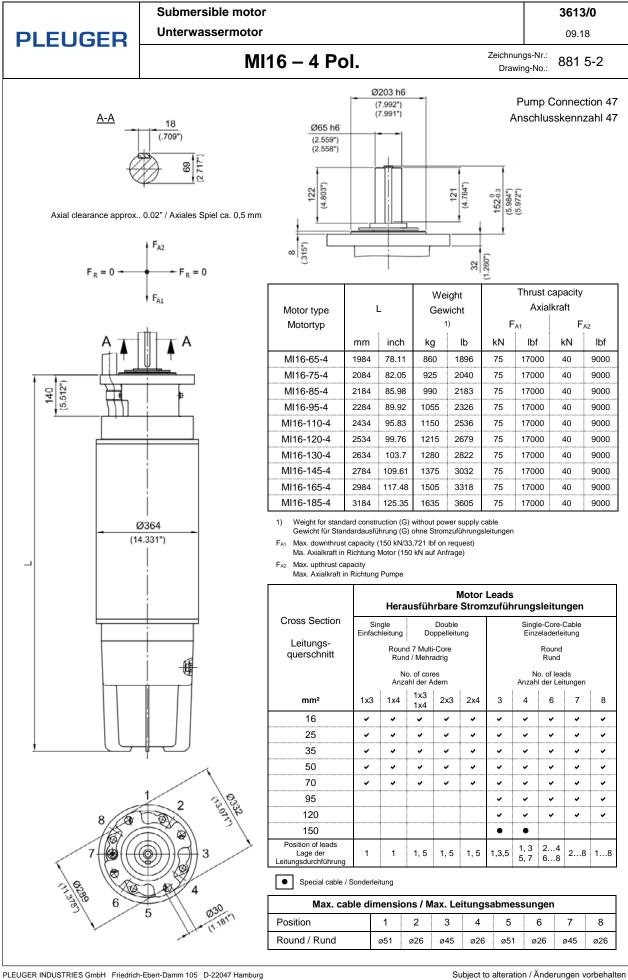
Max. downthrust capacity (120 kN/26,977 lbf on request) Ma. Axialkraft in Richtung Motor (120 kN auf Anfrage) F_{A1}


F_{A2} Max. upthrust capacity Max. Axialkraft in Richtung Pumpe


		Motor Leads Herausführbare Stromzuführungsleitungen										
Cross Section	Sin Einfach		Do	Double ppelleitu	ng	Single-Core-Cable Einzeladerleitung						
Leitungs- querschnitt		Round 7 Multi-Core Rund / Mehradrig					Round Rund					
			o. of core ahl der A			No. of leads Anzahl der Leitungen						
mm²	1x3	1x4	1x3 1x4	2x3	2x4	3	4	6	7	8		
16	~	~	~	~	•	•	~	~	~	~		
25	~	~	~	~	•	~	~	~	~	~		
35	•	~	~	~	•	~	~	~	~	~		
50	~	~	~	~	•	~	~	~	~	~		
70	>			~		•	~	~	~	~		
95						•	~					
Position of leads Lage der Leitungsdurchführung	1/9	1/9		1 ,5 / 9 ,10		1,2,4	14	16	16, 8	18		

Max. cable dimensions / Max. Leitungsabmessungen											
Position	1	2	3	4	5	6	7	8	9	10	
Round / Rund	ø40	ø26	ø40	ø26	ø26	ø26	ø26	ø26	ø45	ø45	

PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg


Subject to alteration / Änderungen vorbehalten

PLEUGER INDUSTRIES GmbH Friedrich-Ebert-Damm 105 D-22047 Hamburg

Subject to alteration / Änderungen vorbehalten

PLEUGER Technologies/

PLEUGER Motor Sensors

PLEUGER pump sensors provide the operator real-time monitoring and data for key areas of pump performance

TEMPERATURE SENSORS Plug-in 3 wire sensor Pt100 Sub Temp

Detects temperature for real-time feedback with 3x1.5 mm³ EPR cable

- The purpose of the measurement is to protect the motor
- Measures the temperature of the motor fill. The measurement is based on the change in resistance which is proportional to the change in temperature
- Plug-in sensor intended to be installed in PLEUGER submersible motor with an applicable interface (seal)

FEATURES

- Simple plug-in installation
- Compact, single piece design
- Retrofittable
- Flexible, water resistant cable

VIBRATION SENSORS Vibration Sensor Pl-100 Sub Accelerometer (one axes)

PI-300 Sub Accelerometer (three axes X,Y,Z)

- Sub Accelerometer detects the incorrect operating conditions of rotating components (e.g. impeller)
- Side entry for easy access
- Waterproof
- Resistant to oil

CONDUCTIVITY SENSORS Motor fill monitoring sensor Pl-100 Sub Con

- Detects an incorrect or contaminated fill of the PLEUGER motor
- System consists of the sensor, a cable and the monitoring controller. The sensor measures the conductivity of the motor fill and its temperature.
- Plug-in sensor intended to be installed in PLEUGER motor with an applicable interface (adapter and seal).

FEATURES

- Plug-in installation
- Waterproof
- Dual function
- For PLEUGER Motors M8 to MI40
- Alternative Solution for Header Tank

PLEUGER Motors for Special Applications

Hot water motor

Designed for hot water applications such as District heating and Geothermal energy

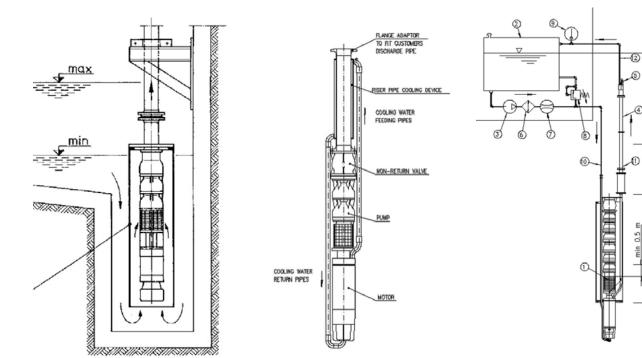
- District heating and Geothermal
- All-weather greenhouse energy
- Cooling water and process pumps
- Thermal spas

Features

- 270 kW (362 HP) up to 85°C (185°F) water temperature
- Motor sizes 6" to 12"
- Starting method DOL, Star-Delta (on request)
- Different cooling solutions available

Examples of PLEUGER Submersible Motors for customized applications

- MI10-600-4 , 10", 600 mm stator length, 4-pole design
- MIP16-130-6 Polder construction, 1300 mm stator length
- PMM6-320-4 Permanent Magnet Motor, 320 mm
 stator length (6" and 8" PMM)
- MIT19-130-2 Tandem configuration –
 two identical MI19-130-2 working together
- VNI22-200-4
- MOE8-410-2 Oil-filled motor
- MHA8-410-2 Filling liquid temperature ϑ > 90 °C or 194 °F
- MK6-460-2 Oil (petroleum) cavern installation



PLEUGER Technologies/

External Cooling Systems

Customized Cooling Systems for individual cooling requirements

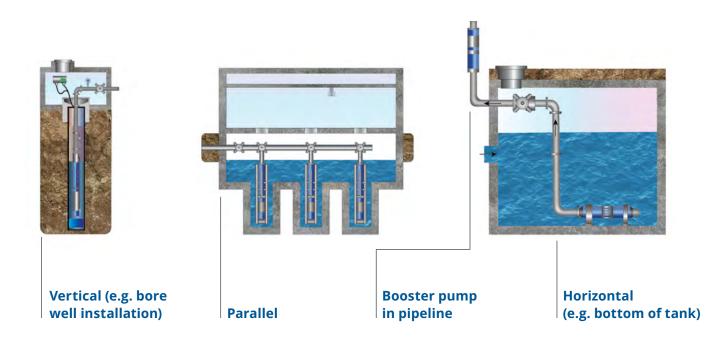
- Simple plug-in installation
- Compact, single piece design
- Retrofittable
- Flexible, water resistant cable

Cooling Shroud

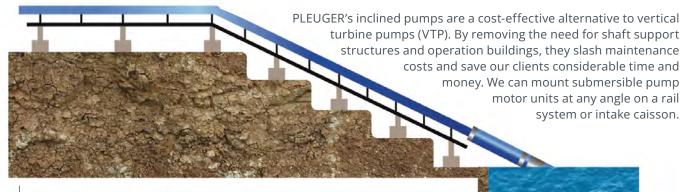
Riser Pipe Cooler

External Cooling Device

v Ø


<u>v 6</u>

0


⊽©

Pump installation options

With various installation options, PLEUGER's pump units are the ideal solution for almost any application in the water industry.

Inclined pumps for processing and cooling water applications

Incline (e.g. water extraction from a river)

ATTACHMENT #3

MW-PW03 AQUIFER TESTING FIELD DATA SHEETS

STEP-DRAWDOWN TEST - PRODUCTION WELL # <u>MJ~Pの</u> FIELD DATA FORM

Test date: 3-10-25

1.15

Well Information						
Date drilled:	_	Borehole diam	eter:	(inches)	Borehole depth:	ft BLS
Casing ID diameter:	(inches)	Casing materia	l & thickness:		Casing length:	ft BLS
Screen ID diameter:	(inches)	Screen materia	l & slot size:	Screen length:	ft BLS	
Screen Type:		Screen fittings:			Total well depth:	ft BLS
Pump Information						
Pump type:		Pump diameter	r:		Pump stages:	
Pump column -type/diameter:			Check valve-type/ma	terial:		
Pump intake level:	ft BLS					
Motor type:		Motor horsepo	ower:		Motor length:	
Motor voltage:		Phase:	Service factor:		_ Full-load amps:	

Step-Test Setup

Water discharged to:			Dischar	ge dist	ance from P	W:	(feet)
Orifice size:	12	(inches)	Dischar	ge pip	e diameter:	7	(inches)
Static water level from	n top of acces	ss port: 20	103	(feet)	Date/time:	3-10-25	10828
Contractor performing		21	1.18			/	
Measurements made l	oy:						

STEP #1						1-2-1.3
Notes	Time (hr:min)	Elapse Time (minutes)	Depth to Water (feet)	Line Pressure (psi)	Orifice Reading (inches)	Pumping Rate (gpm)
Static Water Level		-5				
Pump On - Shut In HD	1000	0	26.18			
Valve Open	1001	1				
	1002	2	29.13	30.98	13"	737
	1003	3	34.70			
	1004	4	34.10			
Step #1 Motor	1005	5	34.10	1		
Amp Readings	1010	10	34.97			
$L_1 =$	1015	15	34.97			
L ₂ =	1020	20	35.02	-		
$L_3 =$	1025	25	35.05			
	1030	30	35.10			
	1040	40	35.17			
	1056	50	35,20			
	1100	60	35.26	>		
	1120	80	35.33			
	140	100	35-31		13"	737
	1200	120	35,45	1		0

STEP-DRAWDOWN TEST - PRODUCTION WELL MJ-PW3 Page 2 of 3 Test date:_____

STEP #2					Test date	
		Elapse	Depth to	Line	Orifice	Pumping
Notes	Time	Time	Water	Pressure	Reading	Rate
	(hr:min)	(minutes)	(feet)	(psi)	(inches)	(gpm)
Change Pump Rate	1200	0	35,45			
	1201	1	42.77			
	1202	2	HE OT		29"	1104
	(203	3	44.10		v	
	1204	4	44.06	þ		
Step #2 Motor	RO5	5	44.08			
Amp Readings	1210	10	4415			
$L_1 =$	1215	15	44118			
$L_2 =$	1220	20	44.21			
L ₃ =	1225	25	44,27			
	1230	30	44,26			
	1240	40	44,40			
	1250	50	4442			
	1300	60	44.45			
	1320	80	44.56			
	1340	100	44.62			
	1400	120	44.20			
STEP #3						
Change Pump Rate	1400	0	44.70			
	1401	1			53.5	1500
	1402	2	54.55		0	
	1403	3	54.63			
	1404	4	54.62			
Step # 3 Motor	1405	5	54.72			
Amp Readings	1410	10	35.42			
$L_1 =$	1415	15	55,62			
L ₂ =	1420)	20	55.07			
L ₃ =	1425	25	56.02			
	1430	30	56.19			
	1440	40	56.82			
	1450	50	57.03			
	1500	60	57.17			
	1520	80	57.51			
	1540	100	57,75			
	1600	120	52.95			

STEP-DRAWDOWN TEST - PRODUCTION WELL

STEP #4					Test date:	44
Notes	Time (hr:min)	Elapse Time (minutes)	Depth to Water (feet)	Line Pressure (psi)	Orifice Reading (inches)	Pumping Rate (gpm)
Change Pump Rate	1600	0		75	(mence)	(Spin)
	1601	1	62.87	<u> </u>		
	Keo2	2	63.05		65	921650
	1003	3	63.08			
	1604	4	63.05			
Step #4 Motor	1605	5	63.10			
Amp Readings	1610	10	63.22			
L ₁ =	1415	15	63.65			
L ₂ =	1620	20	63.74	/	4	
L ₃ =	1625	25	63.87			
	1630	30	64,68			
	1640	40	64 85	1	1	
	1650	50	65.09			
	1700	60	65,23			
	1726	80	65.65			
	17.40	100	65.85			- 1
ani /	1800	120	66.13		pun	pofs
Recovery			1 million and the second		l	Charles Street
Pump Off	1801	0	22.25			
	1802	1	22.13			
	1803	2	22.13			
	1804	3	22.12			
	1805	4	22.15			
		5				
		6				
		7		-		
		8				
· · · · · · · · · · · · · · · · · · ·		9	· · · · · · · · · · · · · · · · · · ·			
		10 20				
		30				•
		40				
		50				
	An and the second	50				

Comments & Additional Notes:

D	NR 7811.93		ECORD ells Vater	Page No1		
	Owner			Resources Se	s	
	Location of well on p	property - Du	17 50	<u> </u>		
				Townsh	ip	
	Date .		1	C	DNR Log#	Other Well ID IRV-3
	(Test St	arted 1/1	/ Test En	ded)		
	Company Conduct	ing Test _//W.	5 0- 1epin		ndividual Making Me	other Well ID PRIS
	-			Distance From Pu	Imping Well	
	Measuring Equipmer	nt Used		6.	Dali	
	Static Water Leve	I (S ₀) <u>/9.0</u>				vation Above Ground
	Pumping Water Lev	el (ft.)			Depth of Pump (ft.)	
Date	Clock Time (Use Military Time)	Time Since Pumping Started (In Minutes)	Depth to Water (S)	Change in Water Level (S - S _O)	Discharge Rate (GPM)	Comments (Include Weather Conditions)
5/10	adich		18 98			
2/10	08:20		10.10		· · · · · · · · · · · · · · · · · · ·	
	09:59		19.00			0 0.0.01
			- L			Punpona 10:00
	10:02		19.32			540/24/ n. 760 gpm
	10:05		19.32			· · · ·
	10:24		1937			
	11:02		19 42			
	11.30		19 1/5			
	11:57		17.95			un de aportin
	12:00		19.99			Up 70 2 340 p2
	12:09		19.60			~ / de gpa
	12:42	[14.76			
	13:00		19.76			
	13:41		19 53		1	1
	14.00		19.86			101240 3mg 49815
	14:00		20.05	-		10040 3 m 4 deps x 1.500 q pm
	111, 13		20.10			Jone JP
	15:06		20.19	·		
	15,00					
 	15:30		20.27			1114 5412
	16:00		20.31 20.40 20.45 20.45			4p 40 414 5top
	1/e:11		20.40			121630 gpm
	1 (e', 33		20,46			
	16:36		20.45			
	11 50		20.47	7		
	177:41		20.59	•		
	- 1,5:~ 9		19,82	1	·····	
			1102			
{						

. . . DNR 7811.93

PUMPING TEST RECORD

Observation Wells ODNR-Division of Water Water Resources Section

Page No. __1

	Owner	•	Vaco	Addres	SS	······································
	Location of well on	property				
	County			Townst	nip	
	Date				DDNR Log#	Other Well ID MJ-Pu/3
	(Test St Company Conduct	arted ing Test	/ Test En	ded)	ndividual Making Ma	asurements
					-	
	Measuring Equipmen				imping wen	
	Static Water Leve	$a_{(S_0)} = \frac{21 \cdot 6}{21 \cdot 6}$	9 Measu	rina Point	Fle	vation Above Ground
					Depth of Pump (ft.) _	
Date	Clock Time (Use Military Time)	Time Since Pumping Started (In Minutes)	Depth to Water (S)	Change in Water Level (S - S ₀)	Discharge Rate (GPM)	Comments (Include Weather Conditions)
3/1//2	\$ 0930		21.74		-	
3/11	1000		21.69			Pampon
	1001		25.52			- /
	1002		28.42			
	1003		43.03			
	1004		45.04			
	1005		45,84			
	1010		46 93			
	1015		47 RF			
	1230		42.24		1493	53"-orifice
	025		48.61			
	1030		49.25	-	1500	value (
	1040	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	49. PI		, JOSO	rane pumped
	1050		50.27		1-1-1-1-	value bumped
			50(1		1500	Value beamped
	1(20		51,35			
	1130					and a cult
	1200		52.37			$Op: 4: C3 = 54^{11}$
	12:30		52.81			
	1:00		53.20	·		
	1:30		53.75 54.43	· · · · · · · · · · · · · · · · · · ·		Checked Orfer = 54"
	2:00					
	3:00	······································	54.88			Checkele, frice 54"
	4:00		55.42			
	500		55.81			·
	600		56.07			Adroth
	200		56.43			•
··	800		56.69			orforp 57-54
	900		56:97			04101: 581-54
	1000		57:21			12 ACP B53-54

٠							
	0 w n e r		· · · · · · · · · · · · · · · · · · ·	Well ID		Date	Page No
Date	Clock Time (Use Military Time)	Time Since Pumping Started (In Minutes)	Depth to Water · (S)	Change in Water Level (S - S _o)	Discharge Rate (GPM)	Comm (Include Weath	
	1100		57:38			53 - 51	<u> </u>
	1200		57:51	· · · · · · · · · · · · · · · · · · ·		33-54	
	100	·····	57.65			5 3 5-	· · · · · · · · · · · · · · · · · · ·
	200		57:86			53	
	300		57:97			5, 3	
	400		58:21	4		5 }	
<u> </u>	500		58172			53	
	600		55:48		1	5 3	
	700 800		5 8:11				
	800		54:75			· · · · · · · · · · · · · · · · · · ·	
	900		59:15	•	· · · · · · · · · · · · · · · · · · ·		
	1000		59.31				
	1015		59:23			Punp of	6
	1016	. 	26:90		· · · ·	l	
	1017		24:05				
	1014		24.00	•			
	1019		23.96		-		
	1020		23.97				
				····			
							<u></u>
						-	
].		
· · ·							
•	·						
	· · · · · · · · · · · · · · · · · · ·					· · ·	
				· · · · · · · · · · · · · · · · · · ·		1	
<u> </u>	-	· · · · · · · · · · · · · · · · · · ·			· · ·		······
		· · · · · · · · · · · · · · · · · · ·					
					1	{	

DNR 7811.93

PUMPING TEST RECORD Observation Wells ODNR-Division of Water

Page No. 1

	0		Wate	r Resources So	ection	
	Owner					
	Location of well on	property				
	County			IOWIN	nip	Other Well ID TRN-3
	Date	arted	/ / Test En	(JUNK LOG#	
	Company Conduc	tina Test			Individual Making Me	asurements
	Type of Test	(PTC	PW3	Distance From Pi	umpina Well	asurements
	Measuring Equipme					
	Statio Mater Law		Мозец	uring Point	Fle	vation Above Ground
	Pumping Water Leve	vel (ft.)		[Depth of Pump (ft.)	
Date	Clock Time (Use Military Time)	Time Since Pumping Started (In Minutes)	Depth to Water (S)	Change in Water Level (S - S _O)	Discharge Rate (GPM)	0
2/11		(11111111111111111111111111111111111111				
<u>3/1 </u>	0927		19.43			
•	1009		20.13			
	1024		20:24	•		
	1051		20.29			
	1051		1 20			
	133		20,39			
,	1203		20.46	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
3/1	1024		21.70			Stop CRT @ 1015 Recovery @ 1015
- //	- /					Recovery E1015
						1
						• • • • • • • • • • • • • • • • • • •
	•					
				1		
				4107.0		
			-			
		1				

ATTACHMENT #4

GROUNDWATER LAB RESULTS

7940 Memorial Drive Plain City, Ohio 43064 (614) 873-4654

Date: March 14, 2025

National Water Services LLC (1384) Attn: Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

RE: Certificate of Analysis for Project - Private Drinking Water

The following report contains analytical results for samples submitted on the chain of custody dated March 12, 2025.

I have reviewed the validity of the analytical data generated. All data is reported in accordance to our laboratory QA/QC plan. Any exceptions are noted in the Case Narrative or with qualifiers in the report.

If you have any questions or need additional documentation, please contact our Office.

Sincerely,

Cheryl Rey

Cheryl Rex MASI Laboratories QA/QC Officer cheryl@masilabs.com (614) 873-4654

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW	Client #: 1384 PO Number: 082606 Date Received: 3/12/25 15:39
Lancaster, OH 43130	Ohio EPA Analyzed Date: 3/14/25 11:29
	PWSID: Facility ID:
Sampler Name: Grant Herron	Repeat Sample #:
Sample Date/Time: 3/12/25 09:45	Total Chlorine (mg/L):
Sample Monitoring Point:	Free Chlorine (mg/L):
Sample Type:	Combined Chlorine (mg/L):
Sample Tap/Address: Spigot Warren County Well Field South Lebanon, OH (PW-3)	

Sample ID: 165986-01 Lab Sample # : 5C01574-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Microbiology									
Total Coliform	Absence	/ 100 ml		N/A	N/A	03/12/25 15:24	03/13/25 09:39	EFMG	SM 9223 B

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin	Client #: 1384 PO Number: 082606
281 Hamburg Rd SW	Date Received: 3/12/25 15:39
Lancaster, OH 43130	Ohio EPA Analyzed Date: 3/14/25 11:29
	PWSID: Facility ID:
Sampler Name: Grant Herron	Repeat Sample #:
Sample Date/Time: 3/12/25 10:15	Total Chlorine (mg/L):
Sample Monitoring Point:	Free Chlorine (mg/L):
Sample Type:	Combined Chlorine (mg/L):
Sample Tap/Address: Spigot Warren County Well Field South Lebanon, OH (PW-3)	

Sample ID: 165986-02

Lab Sample #	: 5C01574-02	(Potable)
--------------	--------------	-----------

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Microbiology									
Total Coliform	Absence	/ 100 ml		N/A	N/A	03/12/25 15:24	03/13/25 09:39	EFMG	SM 9223 B

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130 Client #: 1384 PO Number: 082606 Date Received: 3/12/25 15:39 Ohio EPA Analyzed Date: 3/14/25 11:29

Notes and Definitions

Item	Definition
mg/kg Dry	Sample results reported on a dry weight basis
ug/L	ppb/Part per Billion
mg/L	ppm/Part per Million
ng/L	ppt/Part per Trillion
ND	Analyte NOT DETECTED at or above the method detection limit (MDL)
!	Analyte is at or above the Maximum Contaminate Level
MDL	Method Detection Limit
CFU	Colony Forming Units
MPN	Most Probable Number
NTU	Nephelometric Turbidity Unit
pCi/L	Picocuries per liter
SVI	Sludge Volume Index
%	Percent
GPD	Gallons per Day
su	Standard Units

Notes:

1. Calculated analytes are based on raw data and may not reflect the rounding of the individual compounds.

2. Samples are analyzed using the information received on the request sheet and may not be analyzed when the parameters fall outside required guidelines.

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

ENVIRONMENTAL LABORATORIES 7940 Memorial Drive Plain City, OH 43064 614-873-4654	5 on Bottle: 165986
Client #: 1384 Client Name: National Water Services	County: P.O.#P.O.#
Sampler Name: Grant Herron SMP ID:	Sample Type/Class New Well/Special
Sample Tap: <u>Spigest</u> Date Collected: <u>3/12/2025</u> Tap Address: Warren County Well Field, So	
() Public Sample: () PWSID#: () Facility ID #: () Facility ID #:	
() (New Well Nontrans) Nontransient-Noncom	
(New Well Comm) Community Water Syster	
Work Order <u>Microbiological Te</u>	sts
5C01574-012	- Time Collected
() 140 Total Coliform #1	<u>9.'45 an (c)</u> hh:mm am/pm
() 140 Total Coliform #2	10:15 an Us hh:mm am/pm
	Time Halkin Fice lact Ho-MAS
Office Use Only:	n mang bang bang bang bang bang bang bang b
	Route
	Office/Lab CO 1/4
	COOLER: REVISED 2-15-23 DN

7940 Memorial Drive Plain City, Ohio 43064 (614) 873-4654

Date: April 10, 2025

National Water Services LLC (1384) Attn: Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

RE: Certificate of Analysis for Project - Private Drinking Water

The following report contains analytical results for samples submitted on the chain of custody dated March 12, 2025.

I have reviewed the validity of the analytical data generated. All data is reported in accordance to our laboratory QA/QC plan. Any exceptions are noted in the Case Narrative or with qualifiers in the report.

If you have any questions or need additional documentation, please contact our Office.

Sincerely,

Cheryl Rey

Cheryl Rex MASI Laboratories QA/QC Officer cheryl@masilabs.com (614) 873-4654

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC	Client #: 1384
Josh Gavin	PO Number: 082606
281 Hamburg Rd SW	Date Received: 3/12/25 15:28
Lancaster, OH 43130	Ohio EPA Analyzed Date: 4/10/25 09:05
Sampler Name: Grant Herron	PWSID: Facility ID:
Sample Date/Time: 3/12/25 09:45	Repeat Sample #:
Sample Monitoring Point:	Total Chlorine (mg/L):
Sample Type:	Free Chlorine (mg/L):
Sample Tap/Address: Spigot Warren County Well Field South Lebanon, OH (PW-3)	Combined Chlorine (mg/L):

Sample ID: 165986

Lab Sample # : 5C01568-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
EPA 200.8 Rev. 5.4									
Antimony, Total	<3.0	ug/L		3.0	3.0	03/12/25 09:45	03/17/25 17:23	SLB	EPA 200.8 Rev. 5.4
Thallium, Total	<1.0	ug/L		1.0	1.0	03/12/25 09:45	03/17/25 17:23	SLB	EPA 200.8 Rev. 5.4

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin PO Number: 082606 281 Hamburg Rd SW Lancaster, OH 43130 PWSID: Facility ID: Sampler Name: Grant Herron Repeat Sample #: Sample Date/Time: 3/12/25 09:45 Total Chlorine (mg/L): Sample Monitoring Point: Free Chlorine (mg/L): Sample Type: Sample Tap/Address: Spigot Warren County Well Field South Lebanon, OH (PW-3)

Client #: 1384 Date Received: 3/12/25 15:28 Ohio EPA Analyzed Date: 4/10/25 09:05

Combined Chlorine (mg/L):

Sample ID: 165986

Lab Sample # : 5C01568-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Wet Chemistry Analysis									
Alkalinity, Total	275	mg/L CaCO3		4.00		03/18/25 16:18	03/18/25 16:18	JOL	SM 2320 B 2011
Chloride	91.3	mg/L		25.0	25.0	03/14/25 16:02	03/14/25 16:02	JOL	SM 4500Cl B 2011
Cyanide, Free	0.734	ug/L (as free CN)	J	3.00	0.682	03/17/25 13:30	03/17/25 13:30	JOL	ASTM D6888-16 2023
Fluoride	0.20	mg/L		0.20	0.05	03/18/25 10:30	03/18/25 10:30	JOL	SM 4500 F C 2011
Nitrate-Nitrite	0.45	mg/L	J	0.50	0.19	03/13/25 11:10	03/13/25 14:04	JOL	EPA 353.2 Rev 2.0
Nitrate as Nitrate-Nitrite	0.447	mg/L		0.500	0.185	03/13/25 11:10	03/13/25 14:04	JOL	EPA 353.2 Rev 2.0
Nitrite	0.01	mg/L	J	0.10	0.01	03/12/25 16:30	03/12/25 17:06	JOL	EPA 353.2 Rev 2.0
pH (su)	6.0	su	HOLD			03/12/25 15:00	03/12/25 15:00	JAC	SM 4500H B 2011
Temperature (Centigrade)	18.5	su	HOLD			03/12/25 15:00	03/12/25 15:00	JAC	SM 4500H B 2011
Total Dissolved Solids/Total Filterable Residue	476	mg/L		10.0	4.0	03/14/25 09:51	03/14/25 17:25	JOL	SM 2540 C 2015
Sulfate	49.5	mg/L		20.0	4.1	03/17/25 17:45	03/17/25 17:45	JOL	SM 4500 SO42 E 2011
Metals Analysis									
Arsenic, Total	2	ug/L	J	3	0.5	03/14/25 14:39	03/14/25 15:59	KRM	SM 3113 B 2010
Barium, Total	128	ug/L		25.0	0.5	03/20/25 10:42	03/20/25 10:42	KRM	EPA 200.7 1994
Beryllium, Total	ND	ug/L		1.0	0.06	03/20/25 10:42	03/20/25 10:42	KRM	EPA 200.7 1994
Cadmium, Total	ND	ug/L		1.0	0.2	03/20/25 10:42	03/20/25 10:42	KRM	EPA 200.7 1994
Calcium, Total	93.1	mg/L		2.0	0.09	03/13/25 16:41	03/13/25 16:41	CJS	EPA 200.7 1994
Chromium, Total	ND	ug/L		5.0	0.8	03/20/25 10:42	03/20/25 10:42	KRM	EPA 200.7 1994
Copper, Total	10	ug/L	J	50	1	03/14/25 15:40	03/14/25 15:40	CJS	EPA 200.7 1994
Iron, Total	579	ug/L		80	0.8	03/18/25 18:08	03/18/25 18:08	KRM	EPA 200.7 1994
Lead, Total	0.5	ug/L	J	5.0	0.4	03/14/25 12:32	03/14/25 14:29	KRM	SM 3113 B 2010

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document.

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

Sampler Name: Grant Herron Sample Date/Time: 3/12/25 09:45 Sample Monitoring Point: Sample Type: Sample Tap/Address: Spigot Warren County Well Field South Lebanon, OH (PW-3) Client #: 1384 PO Number: 082606 Date Received: 3/12/25 15:28 Ohio EPA Analyzed Date: 4/10/25 09:05

PWSID: Facility ID: Repeat Sample #: Total Chlorine (mg/L): Free Chlorine (mg/L): Combined Chlorine (mg/L):

Sample ID: 165986 (Continued)

Lab Sample # : 5C01568-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Metals Analysis (Continued)									
Magnesium, Total	24.0	mg/L		5.0	0.04	03/13/25 16:41	03/13/25 16:41	CJS	EPA 200.7 1994
Manganese, Total	15	ug/L	J	20	0.6	03/18/25 18:08	03/18/25 18:08	KRM	EPA 200.7 1994
Mercury, Total	ND	ug/L		0.5	0.07	03/18/25 12:59	03/19/25 14:05	CJS	EPA 245.1 1994
Nickel, Total	ND	ug/L		10.0	1.2	03/20/25 10:42	03/20/25 10:42	KRM	EPA 200.7 1994
Selenium, Total	ND	ug/L		5.0	0.5	03/14/25 16:05	03/14/25 17:20	KRM	SM 3113 B 2010
Silver, Total	ND	ug/L		10.0	0.6	03/14/25 11:28	03/14/25 11:28	CJS	EPA 200.7 1994
Sodium, Total	42.3	mg/L		5.0	0.2	03/13/25 16:41	03/13/25 16:41	CJS	EPA 200.7 1994
Zinc, Total	19.5	ug/L		10.0	0.9	03/20/25 10:42	03/20/25 10:42	KRM	EPA 200.7 1994
Volatile Organic Chemicals (VOC)									
1,1,1-Trichloroethane	ND	ug/L		0.5	0.09	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,1,2-Trichloroethane	ND	ug/L		0.5	0.07	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,1-Dichloroethene	ND	ug/L		0.5	0.09	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,2,4-Trichlorobenzene	ND	ug/L		0.5	0.1	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,2-Dichlorobenzene	ND	ug/L		0.5	0.03	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,2-Dichloroethane	ND	ug/L		0.5	0.05	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,2-Dichloropropane	ND	ug/L		0.5	0.08	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
1,4-Dichlorobenzene	ND	ug/L		0.5	0.07	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Benzene	ND	ug/L		0.5	0.06	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Carbon Tetrachloride	ND	ug/L		0.5	0.08	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Chlorobenzene	ND	ug/L		0.5	0.04	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
cis-1,2-Dichloroethene	ND	ug/L		0.5	0.04	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Ethylbenzene	ND	ug/L		0.5	0.05	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Methylene Chloride	ND	ug/L		0.5	0.05	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Styrene	ND	ug/L		0.5	0.07	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130

Sampler Name: Grant Herron Sample Date/Time: 3/12/25 09:45 Sample Monitoring Point: Sample Type: Sample Tap/Address: Spigot Warren County Well Field South Lebanon, OH (PW-3) Client #: 1384 PO Number: 082606 Date Received: 3/12/25 15:28 Ohio EPA Analyzed Date: 4/10/25 09:05

PWSID: Facility ID: Repeat Sample #: Total Chlorine (mg/L): Free Chlorine (mg/L): Combined Chlorine (mg/L):

Sample ID: 165986 (Continued) Lab Sample # : 5C01568-01 (Potable)

Analyte	Result	Units	Qual	Reporting Limit	MDL	Date/Time Prepared	Date/Time Analyzed	Analyst	Method
Volatile Organic Chemicals (VO	<u>C) (Continu</u>	ed)							
Tetrachloroethene	ND	ug/L		0.5	0.07	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Toluene	ND	ug/L		0.5	0.05	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
trans-1,2-Dichloroethene	ND	ug/L		0.5	0.1	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Trichloroethene	ND	ug/L		0.5	0.08	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Vinyl Chloride	ND	ug/L		0.5	0.1	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Total Xylenes	ND	ug/L		1.5	0.2	03/14/25 17:56	03/14/25 17:56	DTS	EPA Method 524.2
Surrogate: 4-Bromofluorobenzene			94%			70-130			EPA Method 524.2
Surrogate: 1,2-Dichlorobenzene-d4			92%			70-130			EPA Method 524.2
Synthetic Organic Compounds	(SOC) Group	01							
Alachlor	ND	ug/L		0.20	0.07	03/14/25 16:20	03/18/25 23:56	MEM	EPA Method 525.2
Atrazine	ND	ug/L		0.30	0.07	03/14/25 16:20	03/18/25 23:56	MEM	EPA Method 525.2
Simazine	ND	ug/L		0.35	0.06	03/14/25 16:20	03/18/25 23:56	MEM	EPA Method 525.2
Surrogate: 1,3-Dimethyl-2-nitrobenzene			93%			70-130			EPA Method 525.2
Surrogate: Triphenylphosphate			106%			70-130			EPA Method 525.2
Surrogate: Perylene-d12			101%			70-130			EPA Method 525.2

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document. No duplication of this report is allowed, except in its entirety.

Microbiological/Inorganic Certification - 877 Organic Certification - 4100

National Water Services LLC Josh Gavin 281 Hamburg Rd SW Lancaster, OH 43130 Client #: 1384 PO Number: 082606 Date Received: 3/12/25 15:28 Ohio EPA Analyzed Date: 4/10/25 09:05

Notes and Definitions

Item	Definition
HOLD	Exceeds Recommended Holding Time
J	Analyte was positively identified, the associated numerical value is estimated.
mg/kg Dry	Sample results reported on a dry weight basis
ug/L	ppb/Part per Billion
mg/L	ppm/Part per Million
ng/L	ppt/Part per Trillion
ND	Analyte NOT DETECTED at or above the method detection limit (MDL)
!	Analyte is at or above the Maximum Contaminate Level
MDL	Method Detection Limit
CFU	Colony Forming Units
MPN	Most Probable Number
NTU	Nephelometric Turbidity Unit
pCi/L	Picocuries per liter
SVI	Sludge Volume Index
%	Percent
GPD	Gallons per Day
su	Standard Units
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
Notes:	

Notes:

1. Calculated analytes are based on raw data and may not reflect the rounding of the individual compounds.

2. Samples are analyzed using the information received on the request sheet and may not be analyzed when the parameters fall outside required guidelines.

	the	
ENVIRONMENTAL LAEORATORIES 7940 Memorial Drive Plain City, OH 43064 614-873-4654	on Bottle: 1659	986
Client #: 1384 Client Name: National Water Services C	ounty:	P.O.#_ <u>B8260</u>
Λ	Sample Type/Clas	•
		6 · · ·
Sample Tap: <u>Spigest</u> Date Collected: <u>3 12 2025</u> (MM/DD/YY)		/ \
Tap Address: Warren County Well Field, Sou	th Lebenon, (3H (7W-3)
() Public Sample () PWS ID #: () Facility ID #:		: ,
() (New Well Trans) Transient Noncommunity	yere see All all 1633	NE.
		· · · · · ·
() (New Well Nontrans) Nontransient-Noncomm	nunity + PFAS	•
(New Well Comm) Community Water System	ns + PFAS	i
Work Order <u>Microbiological Tes</u>	ts	
5C01574-012		ter en la contra d
Office Use Only)	Time Collected	
() 140 Total Coliform #1	9:45 am (K)	
	hh:mm am/pm	
an an National Alexa Constraints and a second s In the second		
(.) 140 Total Coliform #2	10:15 an (46)	
	hh:mm am/pm	
	Time Hakin Ficm locttle	entation searce or contract
Office Use Only:	÷.,	
	والمتعارف والمعامين والمعامين	an se an ann
	Route	
	Office/Lab	CO KUF
	COOLER:	REVISED 2-15-23 DN
	.	- -

,

.....

April 08, 2025

Audrey Cooper MASI Environmental Services 7940 Memorial Dr. Plain City, OH 43064 TEL: (614) 873-4654 FAX: (614) 873-3809

RE: 5C01568

Dear Audrey Cooper:

Order No.: 25031198

Alliance Technical Group - Akron received 2 sample(s) on 3/14/2025 for the analyses presented in the following report.

There were no problems with the analytical events associated with this report unless noted in the Case Narrative.

Quality control data is within laboratory defined or method specified acceptance limits except where noted.

If you have any questions regarding these tests results, please feel free to call the laboratory.

Sincerely,

Brian J. Fackelman Project Manager, LIMS Administrator 3310 Win St. Cuyahoga Falls, Ohio 44223

Arkansas 88-0735, California 2943, Colorado, Connecticut PH-0108, Florida NELAC E87688, Idaho OH00923, Illinois 200061, Indiana C-OH-13, ISO/IEC 17025:2017 119125 L22-544, Kansas E-10347, Kentucky (Underground Storage Tank) 3, Kentucky 90146, Maryland 339, Michigan 9988, Minnesota 1780279, Nevada OH009232020-1, New Hampshire 2996, New Jersey OH006, New York 11777, North Carolina 39705 and 631, North Dakota R-201, Ohio DW, Ohio VAP CL0052, Oklahoma 2019-155, Oregon OH200001, Pennsylvania 68-01335, Rhode Island LA000317, South Carolina 92016001, Texas T104704466-19-16, Utah OH009232020-12, Virginia VELAP 10381, West Virginia 9957C

Case Narrative

WO#:	25031198
Date:	4/8/2025

CLIENT: MASI Environmental Services Project: 5C01568

WorkOrder Narrative:

25031198: This report in its entirety consists of the following documents: Cover Letter, Case Narrative, Analytical Results, QC Summary Report, Applicable Accreditation Information, Chain-of-Custody, Cooler Receipt Form, and other applicable forms as necessary. All documents contain the Alliance Technical Group Work Order Number assigned to this report.

Alliance Technical Group holds the accreditations/certifications listed at the bottom of the cover letter that may or may not pertain to this report. Please refer to the "Accreditation Program Analytes Report" for accredited analytes list.

The information contained in this analytical report is the sole property of Alliance Technical Group and that of the customer. It cannot be reproduced in any form without the consent of Alliance Technical Group or the customer for which this report was issued. The results contained in this report are only representative of the samples received. Conditions can vary at different times and at different sampling conditions. Alliance Technical Group is not responsible for use or interpretation of the data included herein.

All results for solid samples are reported on an "as received" or "wet weight" basis unless indicated as "dry weight" using the "-dry" designation on the reporting units.

This report is believed to meet all of the requirements of the accrediting agency, where applicable. Any comments or problems with the analytical events associated with this report are noted below.

WorkOrder Comments:

25031198: State required accreditation not specified; results may not be reported as certified data. Data is not for compliance per the chain of custody; data is for private use.

Analytical Sequence Sample Notes:

25031198-002A SVOC-EPA537_DW(537): Sample exhibited low recoveries for multiple surrogates. Potential low bias. Confirmed via reanalysis.

Alliance Technical Group - Akron
 3310 Win St.

 Cuyahoga Falls, Ohio 44223

 TEL: (330) 253-8211 FAX: (330) 253-4489
 Website: http://www.settek.com

Workorder Sample Summary

WO#: 25031198 08-Apr-25

CLIENT: Project:	MASI Environmenta 5C01568	al Services			
Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
25031198-001	5C01568-01		3/12/2025 9:45:00 AM	3/14/2025 4:10:00 PM	Drinking Water
25031198-001	5C01568-01		3/12/2025 9:45:00 AM	3/14/2025 4:10:00 PM	Drinking Water
25031198-002	5C01568-02 FRB		3/12/2025 9:45:00 AM	3/14/2025 4:10:00 PM	Drinking Water

Page 3 of 17

Analyses	Result	RL Qu	al Units	Uncertainty	DF	Date Analyzed
GROSS ALPHA / GROSS BETA	RADIOACTIVITY (EPA	900.0)		E900.0	E900	Analyst: SMZ
ALPHA, Gross	ND	3.00	pCi/L	± 2.23	1	3/25/2025 4:18:09 PM
BETA, Gross	ND	4.00	pCi/L	± 1.14	1	3/25/2025 4:18:09 PM
RADIUM-228 (904.0)				E904.0	E903-90	4 Analyst: HDJ
Radium-228	ND	1.00	pCi/L	± 0.510	1	4/7/2025 3:25:00 PM
Yield	1.00				1	4/7/2025 3:25:00 PM

Qualifiers:

- H Holding times for preparation or analysis exceeded ND Not Detected
- RL Reporting Detection Limit

M Manual Integration used to determine area response

PL Permit Limit W Sample conta

Sample container temperature is out of limit as specified at testcode

Original

	Result	in da		DI Du	te i i i i i i i i j zeu
PFAS BY EPA 537.1 PERFLUORINATED ALKYL ACII	DS (EPA 537.1)		E537.1	E537.1	Analyst: JJF
PFBS	2.09	1.73	ng/L	1 3/2	21/2025 3:00:00 AM
PFHxS	ND	1.73	ng/L	1 3/2	21/2025 3:00:00 AM
PFOA	2.72	1.73	ng/L	1 3/2	21/2025 3:00:00 AM
PFOS	8.39	1.73	ng/L	1 3/2	21/2025 3:00:00 AM
PFNA	ND	1.73	ng/L	1 3/2	21/2025 3:00:00 AM
HFPO-DA	ND	1.73	ng/L	1 3/2	21/2025 3:00:00 AM
Surr: 13C2-PFDA	101	70 - 130	%Rec	1 3/2	21/2025 3:00:00 AM
Surr: 13C2-PFHxA	99.9	70 - 130	%Rec	1 3/2	21/2025 3:00:00 AM
Surr: 13C3-HFPO-DA	91.2	70 - 130	%Rec	1 3/2	21/2025 3:00:00 AM

Qualifiers: H Holding times for pre

Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

M Manual Integration used to determine area response

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

Alliar	GROUP	2	Alliance Techn Cuyahogc)) 253-8211 FA Website: htt	3 1 Falls, 1X: (33)	2310 Win S Ohio 4422 0) 253-448	7t. 23 29	v	(consolida (consolida VO#: Date Reported:	-
CLIENT:	MASI Environmental S	ervices			Collect	ion Date:	3/12/2	025 9:45:00 A	M
Project:	5C01568								
Lab ID:	25031198-002					Matrix:	DRINI	KING WATER	ł
Client Sample ID:	5C01568-02 FRB								
Analyses		Result	RL	Qual	Units		DF	Date Analyz	ed
PFAS BY EPA 53 PERFLUORINATE	7.1 ED ALKYL ACIDS (EPA	537.1)				E537.1	E53	7.1 Anal	yst: JJF
PFBS		ND	0.0189		ng/L		1	3/21/2025 3:	16:00 AM
PFHxS		ND	0.0189		ng/L		1	3/21/2025 3:	16:00 AM
PFOA		ND	0.0189		ng/L		1	3/21/2025 3:	16:00 AM
PFOS		ND	0.0189		ng/L		1	3/21/2025 3:	16:00 AM
PFNA		ND	0.0189		ng/L		1	3/21/2025 3:	16:00 AM
HFPO-DA		ND	0.0189		ng/L		1	3/21/2025 3:	16:00 AM
Surr: 13C2-PFD	A	98.3	70 - 130		%Rec		1	3/21/2025 3:	16:00 AM
Surr: 13C2-PFH	xA	18.1	70 - 130	S	%Rec		1	3/21/2025 3:	16:00 AM
Surr: 13C3-HFP	O-DA	15.6	70 - 130	S	%Rec		1	3/21/2025 3:	16:00 AM

Qualifiers: H Holdin

Holding times for preparation or analysis exceeded

ND Not Detected

RL Reporting Detection Limit

M Manual Integration used to determine area response

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

Client:MASI EnviProject:5C01568	ironmental Services						В	atchID: 8	2982		
Sample ID: MB-82982	SampType: MBLK		-	VO Units: ng/L		Prep Da	te: 3/18/20	25	RunNo: 205	5459	
Client ID: BatchQC	Batch ID: 82982	Test	lo: E537.1	E537.1		Analysis Da	te: 3/20/20	25	SeqNo: 550)2042	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	ND	2.00									
PFHxS	ND	2.00									
PFOA	ND	2.00									
PFOS	ND	2.00									
PFNA	ND	2.00									
HFPO-DA	ND	2.00									
Surr: 13C3-HFPO-DA	0.0366		0.04000		91.5	69.5	130.5				
Surr: 13C2-PFDA	0.0445		0.04000		111	69.5	130.5				
Surr: 13C2-PFHxA	0.0400		0.04000		100	69.5	130.5				
Surr: 13C3-HFPO-DA	0.0366		0.04000		91.5	69.5	130.5				
Surr: NETFOSAA-d5	0.178		0.1600		111	69.5	130.5				
Sample ID: 25031063-003AMS	SampType: MS	TestCo	de: UCMR5_S	VO Units: ng/L		Prep Da	te: 3/18/20	25	RunNo: 205	5459	
Client ID: BatchQC	Batch ID: 82982	Test	lo: E537.1	E537.1		Analysis Da	te: 3/21/20	25	SeqNo: 550	02050	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS	34.6	1.78	31.4	0.723	108	69.5	130.5				
PFHxS	33.0	1.78	32.4	0	102	69.5	130.5				
PFOA	31.2	1.78	35.5	0	87.8	69.5	130.5				
PFOS	37.9	1.78	32.9	0	115	69.5	130.5				
PFNA	36.1	1.78	35.5	0	102	69.5	130.5				
HFPO-DA	43.4	1.78	35.5	2.10	116	69.5	130.5				

Holding times for preparation or analysis exceeded **Qualifiers:** Н

Manual Integration used to determine area response Μ

ND Not Detected

PL Permit Limit

> W Sample container temperature is out of limit as specified at testcode

RL Reporting Detection Limit S

Spike Recovery outside accepted recovery limits

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

Client: Project:	MASI Envir 5C01568	conmental Services						В	atchID: 8	2982		
	5031063-003AMS	SampType: MS			SVO Units: ng/L			te: 3/18/20		RunNo: 205		
Client ID: Ba	atchQC	Batch ID: 82982 Result	PQL	lo: E537.1 SPK value	E537.1 SPK Ref Val	%REC	Analysis Da LowLimit		RPD Ref Val	SeqNo: 55(%RPD	RPDLimit	Qual
Surr: 13C3- Surr: 13C2- Surr: 13C2-	-PFDA	0.0299 0.0359 0.0320		0.03552 0.03552 0.03552		84.1 101 90.2	69.5 69.5 69.5	130.5 130.5 130.5				
Surr: 13C3- Surr: NETF	-HFPO-DA	0.0299		0.03552 0.1421		84.1 92.0	69.5 69.5	130.5 130.5				
·	5031063-003AMSD atchQC	SampType: MSD Batch ID: 82982		de: UCMR5_S lo: E537.1	SVO Units: %Rec E537.1		Prep Da Analysis Da	te: 3/18/20 te: 3/21/20		RunNo: 205 SeqNo: 550		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 13C3- Surr: 13C2- Surr: 13C2- Surr: NETF	-PFDA -PFHxA	0.0324 0.0361 0.0324 0.146		0.03681 0.03681 0.03681 0.1472		88.0 98.0 88.0 99.1	69.5 69.5 69.5 69.5	130.5 130.5 130.5 130.5		0 0 0 0	0 30 30 30	

Qualifiers:

Manual Integration used to determine area response Μ

Page 8 of 17

Not Detected ND

Spike Recovery outside accepted recovery limits

PL Permit Limit

> W Sample container temperature is out of limit as specified at testcode

Reporting Detection Limit RL

QC SUMMARY REPORT

WO#: **25031198**

08-Apr-25

Client: Project:	MASI Envi 5C01568	ronmental Services						B	SatchID: 8	2982		
Sample ID: MB	-82982 chQC	SampType: MBLK Batch ID: 82982		de: UCMR5_S	SVO Units: ng/L E537.1		Prep Da Analysis Da	te: 3/18/20		RunNo: 20		
Analyte		Result	PQL		SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
PFBS		ND	2.00									
PFHxS		ND	2.00									
PFOA		ND	2.00									
PFOS		ND	2.00									
PFNA		ND	2.00									
HFPO-DA		ND	2.00									
Surr: 13C3-H	FPO-DA	0		0.04000		0	69.5	130.5				S
Surr: 13C2-P	FDA	0.0477		0.04000		119	69.5	130.5				
Surr: 13C2-P	FHxA	0.0414		0.04000		104	69.5	130.5				
Surr: 13C3-H	FPO-DA	0.0401		0.04000		100	69.5	130.5				
Surr: NETFO	SAA-d5	0.183		0.1600		114	69.5	130.5				

Qualifiers:

M Manual Integration used to determine area response

ND Not Detected

S

Spike Recovery outside accepted recovery limits

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

RL Reporting Detection Limit

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

Original

Client:	MASI Envi	ronmental Services										
Project:	5C01568							I	BatchID: 8	32982		
Sample ID: MB	-82982	SampType: MBLK	TestCo	de: SVOC-EP	A53 Units: ng/L		Prep Da	ite: 3/18/2	025	RunNo: 20	5458	
Client ID: Bat	chQC	Batch ID: 82982	Test	No: E537.1	E537.1		Analysis Da	te: 3/20/2	025	SeqNo: 550	02015	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS		ND	2.00									
PFHxS		ND	2.00									
PFOA		ND	2.00									
PFOS		ND	2.00									
PFNA		ND	2.00									
HFPO-DA		ND	2.00									
Surr: 13C2-P	FDA	0.0445		0.04000		111	70	130				
Surr: 13C2-P	FHxA	0.0400		0.04000		100	70	130				
Surr: 13C3-H	IFPO-DA	0.0366		0.04000		91.5	70	130				
Surr: NETFO	SAA-d5	0.178		0.1600		111	70	130				

Qualifiers:

Manual Integration used to determine area response Μ

Not Detected ND

PL Permit Limit

> W Sample container temperature is out of limit as specified at testcode

Reporting Detection Limit RL

Spike Recovery outside accepted recovery limits S

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

Original

Client:	MASI Envir	onmental Services										
Project:	5C01568							ł	BatchID: 8	32982		
Sample ID: MB-82	2982	SampType: MBLK	TestCo	de: SVOC-EP	A53 Units: ng/L		Prep Da	te: 3/18/2	025	RunNo: 205	5455	
Client ID: Batch	QC	Batch ID: 82982	Test	lo: E537.1	E537.1		Analysis Da	ite: 3/19/20	025	SeqNo: 550	01890	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
PFBS		ND	2.00									
PFHxS		ND	2.00									
PFOA		ND	2.00									
PFOS		ND	2.00									
PFNA		ND	2.00									
HFPO-DA		ND	2.00									
Surr: 13C2-PFE	DA	0.0477		0.04000		119	70	130				
Surr: 13C2-PFH	łхА	0.0414		0.04000		104	70	130				
Surr: 13C3-HFF	PO-DA	0.0401		0.04000		100	70	130				
Surr: NETFOSA	AA-d5	0.183		0.1600		114	70	130				

Qualifiers:

Holding times for preparation or analysis exceeded Н

Manual Integration used to determine area response Μ

Not Detected ND

PL Permit Limit

> W Sample container temperature is out of limit as specified at testcode

Reporting Detection Limit RL

S

Spike Recovery outside accepted recovery limits

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

	AASI Environmental Services						BatchID:	83122	
Sample ID: MB-8312	2 SampType: MBLK	TestCoo	de: AlphaBeta	a_D Units: pCi/L		Prep Dat	e: 3/24/2025	RunNo: 205781	
Client ID: BatchQC	Batch ID: 83122	Test	lo: E900.0	E900		Analysis Dat	e: 3/25/2025	SeqNo: 5509294	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
ALPHA, Gross	ND	3.00							
BETA, Gross	ND	4.00							
Sample ID: LCS-831	22 SampType: LCS	TestCoo	de: AlphaBeta	a_D Units: pCi/L		Prep Dat	e: 3/24/2025	RunNo: 205781	
Client ID: BatchQC	Batch ID: 83122	Test	lo: E900.0	E900		Analysis Dat	e: 3/25/2025	SeqNo: 5509295	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
ALPHA, Gross	11.6	3.00	15.00	0	77.5	70	130		
BETA, Gross	18.7	4.00	20.00	0	93.5	70	130		
Sample ID: RLC-831	22 SampType: RLC	TestCoo	de: AlphaBeta	a_D Units: pCi/L		Prep Dat	e: 3/24/2025	RunNo: 205781	
Client ID: BatchQC	Batch ID: 83122	Test	lo: E900.0	E900		Analysis Dat	e: 3/25/2025	SeqNo: 5509297	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
ALPHA, Gross	3.93	3.00	3.000	0	131	50	150		
BETA, Gross	ND	4.00	4.000	0	80.5	50	150		

Qualifiers:

Manual Integration used to determine area response Μ

ND Not Detected

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

Reporting Detection Limit RL

Spike Recovery outside accepted recovery limits S

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

	MASI Environm 5C01568	nental Services						I	BatchID: 8	33157		
Sample ID: MB-831	57 Sai	mpType: MBLK	TestCoo	de: Radium-2	28_ Units: pCi/L		Prep Da	te: 3/25/2	025	RunNo: 20	6535	
Client ID: BatchQ	с в	atch ID: 83157	TestN	lo: E904.0	E903-904		Analysis Da	ite: 4/7/202	25	SeqNo: 55	28483	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228		ND	1.00		0	0						
Yield		1.00			0	0						
Sample ID: LCS-83	157 Sai	mpType: LCS	TestCoo	de: Radium-2	28_ Units: pCi/L		Prep Da	te: 3/25/2	025	RunNo: 20	6535	
Client ID: BatchQ	C B	atch ID: 83157	TestN	lo: E904.0	E903-904		Analysis Da	ite: 4/7/202	25	SeqNo: 55	28484	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228		3.37	1.00	5.000	0	67.4	50	130				
Yield		1.00			0	0						
Sample ID: LCSD-8	3157 Sai	mpType: LCSD	TestCo	de: Radium-2	28_ Units: pCi/L		Prep Da	te: 3/25/2	025	RunNo: 20	6535	
Client ID: BatchQ	с в	atch ID: 83157	TestN	lo: E904.0	E903-904		Analysis Da	ite: 4/7/202	25	SeqNo: 55	28485	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Radium-228		3.75	1.00	5.000	0	75.0	50	130	3.370	10.7	20	
Yield		1.00			0	0			1.000	0		

Qualifiers: Н

Manual Integration used to determine area response Μ

ND Not Detected

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

Reporting Detection Limit RL

Spike Recovery outside accepted recovery limits S

QC SUMMARY REPORT

25031198 WO#:

08-Apr-25

Original

Client: Project:	MASI Environmental Services 5C01568 BatchID: 83157											
Sample ID: RL Client ID: Bat	CD-83157 tchQC	SampType: RLC Batch ID: 83157		de: Radium-2 No: E904.0	28_ Units: pCi/L E903-904			te: 3/25/2025 te: 4/7/2025		RunNo: 200 SeqNo: 552		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Radium-228 Yield		1.10 1.00	1.00	1.000	0 0	110 0	50	150				

Qualifiers:

Manual Integration used to determine area response Μ

ND Not Detected

PL Permit Limit

W Sample container temperature is out of limit as specified at testcode

Reporting Detection Limit RL

- S
 - Spike Recovery outside accepted recovery limits

Qualifiers and Acronyms

 WO#:
 25031198

 Date:
 4/8/2025

These commonly used Qualifiers and Acronyms may or may not be present in this report.

Qualifiers

U	The compound was analyzed for but was not detected above the MDL.
J	The reported value is greater than the Method Detection Limit but less than the Reporting Limit.
H	The hold time for sample preparation and/or analysis was exceeded. Not Clean Water Act compliant.
D	The result is reported from a dilution.
Ε	The result exceeded the linear range of the calibration or is estimated due to interference.
MC	The result is below the Minimum Compound Limit.
*	The result exceeds the Regulatory Limit or Maximum Contamination Limit.
m	Manual integration was used to determine the area response.
d	Manual integration in which peak was deleted
Ν	The result is presumptive based on a Mass Spectral library search assuming a 1:1 response.
Р	The second column confirmation exceeded 25% difference.
С	The result has been confirmed by GC/MS.
Х	The result was not confirmed when GC/MS Analysis was performed.
В	The analyte was detected in the Method Blank at a concentration greater than the RL.
MB+	The analyte was detected in the Method Blank at a concentration greater than the MDL.
G	The ICB or CCB contained reportable amounts of analyte.
QC-/+	The CCV recovery failed low (-) or high (+).
R/QDR	The RPD was outside of accepted recovery limits.
QL-/+	The LCS or LCSD recovery failed low (-) or high (+).
QLR	The LCS/LCSD RPD was outside of accepted recovery limits.
QM-/+	The MS or MSD recovery failed low (-) or high (+).
QMR	The MS/MSD RPD was outside of accepted recovery limits.
QV-/+	The ICV recovery failed low (-) or high (+).

- **S** The spike result was outside of accepted recovery limits.
- W Samples were received outside temperature limits $(0^\circ 6^\circ C)$. Not Clean Water Act compliant.
- **Z** Deviation; A deviation from the method was performed; Please refer to the Case Narrative for additional information

Acronyms

ND	Not Detected	RL	Reporting Limit
QC	Quality Control	MDL	Method Detection Limit
MB	Method Blank	LOD	Level of Detection
LCS	Laboratory Control Sample	LOQ	Level of Quantitation
LCSD	Laboratory Control Sample Duplicate	PQL	Practical Quantitation Limit
QCS	Quality Control Sample	CRQL	Contract Required Quantitation Limit
DUP	Duplicate	PL	Permit Limit
MS	Matrix Spike	RegLvl	Regulatory Limit
MSD	Matrix Spike Duplicate	MCL	Maximum Contamination Limit
RPD	Relative Percent Different	MinCL	Minimum Compound Limit
ICV	Initial Calibration Verification	RA	Reanalysis
ICB	Initial Calibration Blank	RE	Reextraction
CCV	Continuing Calibration Verification	TIC	Tentatively Identified Compound
CCB	Continuing Calibration Blank	RT	Retention Time
RLC	Reporting Limit Check	CF	Calibration Factor

This list of Qualifiers and Acronyms reflects the most commonly utilized Qualifiers and Acronyms for reporting. Please refer to the Analytical Notes in the Case Narrative for any Qualifiers or Acronyms that do not appear in this list or for additional information regarding the use of these Qualifiers on reported data.

25031198

SUBCONTRACT ORDER

Sending Laboratory:

Mobile Analytical Services, Inc. 7940 Memorial Dr Plain City, OH 43064 Phone: 614-873-4654

Subcontracted Laboratory:

Summit Environmental Technologies (5626) 3310 Win Street Cuyahoga Falls, OH 44223 Phone: (330) 253-8211

Project Manager: Audrey Cooper

Work Order: 5C01568

Analysis	Expires	Method	Comments	Private
Sample ID: 5C01568-01 Pota	ble Sampled: 03/12/202	5 09:45		
PFOA/PFOS M537 Regulated List	03/26/2025 09:45	REC'OL 2 PEAS	container	-S
Radium-228	09/08/2025 09:45			
Gross Beta	09/08/2025 09:45			
Gross Alpha	09/08/2025 09:45			
Containers Supplied:		Cpr	124 PM	
Sample ID: 5C01568-02 Pota	ble Sampled: 03/12/202	25 09:45		
PFOA/PFOS M537 Regulated List Field	Blank 03/26/2025 09:45			
Containers Supplied:				
	1:1-	0.0=1.1°)	ATG, C	oclerifice
	Pa	te 16 of 17 ge 1 of 1 City, Ohio 43064 (614)	873-4654	<u>3/14/27, 160</u> Date

Sample Log-In Check List

		MAS-OH-43017	Work Order Number:	23031190		RcptNo: 1
Logo	ged by:	Tegan A. Richards	3/14/2025 4:10:00 PM	l	legon hie	hools
Com	pleted By:	Tegan A. Richards	3/15/2025 2:07:27 PM	I	legon hie legon hie ben	shoods
Revi	ewed By:	Brian J. Fackelman	3/17/2025 3:44:44 PM	l	blen	
<u>Cha</u>	in of Cus	stody				
1.	Is Chain of	Custody complete?		Yes	No 🗹	Not Present
2.	How was th	ne sample delivered?		<u>Alliance</u>		
<u>Log</u>	<u>In</u>					
3.	Coolers are	e present?		Yes 🖌	No 🗌	NA 🗌
4.	Shipping co	ontainer/cooler in good con	dition?	Yes 🖌	No 🗌	
	Custody se	als intact on shipping cont	ainer/cooler?	Yes	No 🗌	Not Present
	No.	Seal Da	ate:	Signed By:		
5.	Was an att	empt made to cool the san	nples?	Yes 🗹	No 🗌	NA 🗌
6.	Were all sa	amples received at a tempe	erature of >0° C to 6.0°C	Yes 🗹	No 🗌	
7.	Sample(s)	in proper container(s)?		Yes 🖌	No 🗌	
8.	Sufficient s	ample volume for indicated	d test(s)?	Yes 🖌	No 🗌	
9.	Are sample	es (except VOA and ONG)	properly preserved?	Yes 🖌	No 🗌	
-		rvative added to bottles?		Yes	No 🗹	NA 🗌
11	Is the head	lspace in the VOA vials les	s than 1/4 inch or 6 mm?	Yes 🗌	No 🗌	No VOA Vials 🗹
		sample containers received		Yes 🗌	No 🗹	
13.	Does pape	rwork match bottle labels?		Yes 🔽	No 🗌	
	•	epancies on chain of custo es correctly identified on Ch	• /	Yes 🖌	No 🗌	
		hat analyses were request		Yes 🖌		
-		olding times able to be met		Yes 🗹		
		y customer for authorization				
<u>Spe</u>	cial Hand	<u>dling (if applicable)</u>				
-		notified of all discrepancies	s with this order?	Yes 🗌	No 🗌	NA 🗹
	Perso	n Notified:	Date:			
	By W	hom:	Via:	eMail	Phone 🗌 Fax	In Person
	Rega	rding:				
	Client	Instructions:				

18. Additional remarks:

Project information (address/state), preservation, and number of containers not recorded on COC.

Cooler Information

	Cooler No	Temp ⁰C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1	1.1	Good	Not Present			
Page 17 of 17							